TensorFlow 2 version | View source on GitHub |
Class wrapping dynamic-sized, per-time-step, write-once Tensor arrays.
tf.TensorArray(
dtype, size=None, dynamic_size=None, clear_after_read=None,
tensor_array_name=None, handle=None, flow=None, infer_shape=True,
element_shape=None, colocate_with_first_write_call=True, name=None
)
This class is meant to be used with dynamic iteration primitives such as
while_loop
and map_fn
. It supports gradient back-propagation via special
"flow" control flow dependencies.
Args | |
---|---|
dtype
|
(required) data type of the TensorArray. |
size
|
(optional) int32 scalar Tensor : the size of the TensorArray.
Required if handle is not provided.
|
dynamic_size
|
(optional) Python bool: If true, writes to the TensorArray can grow the TensorArray past its initial size. Default: False. |
clear_after_read
|
Boolean (optional, default: True). If True, clear TensorArray values after reading them. This disables read-many semantics, but allows early release of memory. |
tensor_array_name
|
(optional) Python string: the name of the TensorArray. This is used when creating the TensorArray handle. If this value is set, handle should be None. |
handle
|
(optional) A Tensor handle to an existing TensorArray. If this
is set, tensor_array_name should be None. Only supported in graph mode.
|
flow
|
(optional) A float Tensor scalar coming from an existing
TensorArray.flow . Only supported in graph mode.
|
infer_shape
|
(optional, default: True) If True, shape inference is enabled. In this case, all elements must have the same shape. |
element_shape
|
(optional, default: None) A TensorShape object specifying
the shape constraints of each of the elements of the TensorArray.
Need not be fully defined.
|
colocate_with_first_write_call
|
If True , the TensorArray will be
colocated on the same device as the Tensor used on its first write
(write operations include write , unstack , and split ). If False ,
the TensorArray will be placed on the device determined by the
device context available during its initialization.
|
name
|
A name for the operation (optional). |
Raises | |
---|---|
ValueError
|
if both handle and tensor_array_name are provided. |
TypeError
|
if handle is provided but is not a Tensor. |
Attributes | |
---|---|
dtype
|
The data type of this TensorArray. |
dynamic_size
|
Python bool; if True the TensorArray can grow dynamically.
|
element_shape
|
The tf.TensorShape of elements in this TensorArray.
|
flow
|
The flow Tensor forcing ops leading to this TensorArray state.
|
handle
|
The reference to the TensorArray. |
Methods
close
close(
name=None
)
Close the current TensorArray.
concat
concat(
name=None
)
Return the values in the TensorArray as a concatenated Tensor
.
All of the values must have been written, their ranks must match, and and their shapes must all match for all dimensions except the first.
Args | |
---|---|
name
|
A name for the operation (optional). |
Returns | |
---|---|
All the tensors in the TensorArray concatenated into one tensor. |
gather
gather(
indices, name=None
)
Return selected values in the TensorArray as a packed Tensor
.
All of selected values must have been written and their shapes must all match.
Args | |
---|---|
indices
|
A 1-D Tensor taking values in [0, max_value) . If
the TensorArray is not dynamic, max_value=size() .
|
name
|
A name for the operation (optional). |
Returns | |
---|---|
The tensors in the TensorArray selected by indices , packed into one
tensor.
|
grad
grad(
source, flow=None, name=None
)
identity
identity()
Returns a TensorArray with the same content and properties.
Returns | |
---|---|
A new TensorArray object with flow that ensures the control dependencies from the contexts will become control dependencies for writes, reads, etc. Use this object all for subsequent operations. |
read
read(
index, name=None
)
Read the value at location index
in the TensorArray.
Args | |
---|---|
index
|
0-D. int32 tensor with the index to read from. |
name
|
A name for the operation (optional). |
Returns | |
---|---|
The tensor at index index .
|
scatter
scatter(
indices, value, name=None
)
Scatter the values of a Tensor
in specific indices of a TensorArray
.
Args:
indices: A 1-D
Tensor
taking values in [0, max_value)
. If
the TensorArray
is not dynamic, max_value=size()
.
value: (N+1)-D. Tensor of type dtype
. The Tensor to unpack.
name: A name for the operation (optional).
Returns: A new TensorArray object with flow that ensures the scatter occurs. Use this object all for subsequent operations.
Raises: ValueError: if the shape inference fails.
size
size(
name=None
)
Return the size of the TensorArray.
split
split(
value, lengths, name=None
)
Split the values of a Tensor
into the TensorArray.
Args:
value: (N+1)-D. Tensor of type dtype
. The Tensor to split.
lengths: 1-D. int32 vector with the lengths to use when splitting
value
along its first dimension.
name: A name for the operation (optional).
Returns: A new TensorArray object with flow that ensures the split occurs. Use this object all for subsequent operations.
Raises: ValueError: if the shape inference fails.
stack
stack(
name=None
)
Return the values in the TensorArray as a stacked Tensor
.
All of the values must have been written and their shapes must all match.
If input shapes have rank-R
, then output shape will have rank-(R+1)
.
Args | |
---|---|
name
|
A name for the operation (optional). |
Returns | |
---|---|
All the tensors in the TensorArray stacked into one tensor. |
unstack
unstack(
value, name=None
)
Unstack the values of a Tensor
in the TensorArray.
If input value shapes have rank-R
, then the output TensorArray will
contain elements whose shapes are rank-(R-1)
.
Args:
value: (N+1)-D. Tensor of type dtype
. The Tensor to unstack.
name: A name for the operation (optional).
Returns: A new TensorArray object with flow that ensures the unstack occurs. Use this object all for subsequent operations.
Raises: ValueError: if the shape inference fails.
write
write(
index, value, name=None
)
Write value
into index index
of the TensorArray.
Args | |
---|---|
index
|
0-D. int32 scalar with the index to write to. |
value
|
N-D. Tensor of type dtype . The Tensor to write to this index.
|
name
|
A name for the operation (optional). |
Returns | |
---|---|
A new TensorArray object with flow that ensures the write occurs. Use this object all for subsequent operations. |
Raises | |
---|---|
ValueError
|
if there are more writers than specified. |