View source on GitHub |
Log provided 'op_log', and add additional model information below.
tf.profiler.write_op_log(
graph, log_dir, op_log=None, run_meta=None, add_trace=True
)
The API also assigns ops in tf.compat.v1.trainable_variables() an op type called '_trainable_variables'. The API also logs 'flops' statistics for ops with op.RegisterStatistics() defined. flops calculation depends on Tensor shapes defined in 'graph', which might not be complete. 'run_meta', if provided, completes the shape information with best effort.
Args | |
---|---|
graph
|
tf.Graph. If None and eager execution is not enabled, use default graph. |
log_dir
|
directory to write the log file. |
op_log
|
(Optional) OpLogProto proto to be written. If not provided, an new one is created. |
run_meta
|
(Optional) RunMetadata proto that helps flops computation using run time shape information. |
add_trace
|
Whether to add python code trace information. Used to support "code" view. |