Stay organized with collections Save and categorize content based on your preferences.

View source on GitHub

Returns a feature column that represents sequences of integers.

Pass this to embedding_column or indicator_column to convert sequence categorical data into dense representation for input to sequence NN, such as RNN.


watches = sequence_categorical_column_with_identity(
    'watches', num_buckets=1000)
watches_embedding = embedding_column(watches, dimension=10)
columns = [watches_embedding]

features =, features=make_parse_example_spec(columns))
input_layer, sequence_length = sequence_input_layer(features, columns)

rnn_cell = tf.compat.v1.nn.rnn_cell.BasicRNNCell(hidden_size)
outputs, state = tf.compat.v1.nn.dynamic_rnn(
    rnn_cell, inputs=input_layer, sequence_length=sequence_length)

key A unique string identifying the input feature.
num_buckets Range of inputs. Namely, inputs are expected to be in the range [0, num_buckets).
default_value If None, this column's graph operations will fail for out-of-range inputs. Otherwise, this value must be in the range [0, num_buckets), and will replace out-of-range inputs.

A _SequenceCategoricalColumn.

ValueError if num_buckets is less than one.
ValueError if default_value is not in range [0, num_buckets).