Missed TensorFlow World? Check out the recap. Learn more

tf.linalg.LinearOperatorToeplitz

TensorFlow 2 version View source on GitHub

Class LinearOperatorToeplitz

LinearOperator acting like a [batch] of toeplitz matrices.

Inherits From: LinearOperator

Aliases:

This operator acts like a [batch] Toeplitz matrix A with shape [B1,...,Bb, N, N] for some b >= 0. The first b indices index a batch member. For every batch index (i1,...,ib), A[i1,...,ib, : :] is an N x N matrix. This matrix A is not materialized, but for purposes of broadcasting this shape will be relevant.

Description in terms of toeplitz matrices

Toeplitz means that A has constant diagonals. Hence, A can be generated with two vectors. One represents the first column of the matrix, and the other represents the first row.

Below is a 4 x 4 example:

A = |a b c d|
    |e a b c|
    |f e a b|
    |g f e a|

Example of a Toeplitz operator.

# Create a 3 x 3 Toeplitz operator.
col = [1., 2., 3.]
row = [1., 4., -9.]
operator = LinearOperatorToeplitz(col, row)

operator.to_dense()
==> [[1., 4., -9.],
     [2., 1., 4.],
     [3., 2., 1.]]

operator.shape
==> [3, 3]

operator.log_abs_determinant()
==> scalar Tensor

x = ... Shape [3, 4] Tensor
operator.matmul(x)
==> Shape [3, 4] Tensor

#### Shape compatibility

This operator acts on [batch] matrix with compatible shape.
`x` is a batch matrix with compatible shape for `matmul` and `solve` if

operator.shape = [B1,...,Bb] + [N, N], with b >= 0 x.shape = [C1,...,Cc] + [N, R], and [C1,...,Cc] broadcasts with [B1,...,Bb] to [D1,...,Dd]


#### Matrix property hints

This `LinearOperator` is initialized with boolean flags of the form `is_X`,
for `X = non_singular, self_adjoint, positive_definite, square`.
These have the following meaning:

* If `is_X == True`, callers should expect the operator to have the
  property `X`.  This is a promise that should be fulfilled, but is *not* a
  runtime assert.  For example, finite floating point precision may result
  in these promises being violated.
* If `is_X == False`, callers should expect the operator to not have `X`.
* If `is_X == None` (the default), callers should have no expectation either
  way.

<h2 id="__init__"><code>__init__</code></h2>

<a target="_blank" href="https://github.com/tensorflow/tensorflow/blob/r1.15/tensorflow/python/ops/linalg/linear_operator_toeplitz.py#L109-L166">View source</a>

``` python
__init__(
    col,
    row,
    is_non_singular=None,
    is_self_adjoint=None,
    is_positive_definite=None,
    is_square=None,
    name='LinearOperatorToeplitz'
)

Initialize a LinearOperatorToeplitz.

Args:

  • col: Shape [B1,...,Bb, N] Tensor with b >= 0 N >= 0. The first column of the operator. Allowed dtypes: float16, float32, float64, complex64, complex128. Note that the first entry of col is assumed to be the same as the first entry of row.
  • row: Shape [B1,...,Bb, N] Tensor with b >= 0 N >= 0. The first row of the operator. Allowed dtypes: float16, float32, float64, complex64, complex128. Note that the first entry of row is assumed to be the same as the first entry of col.
  • is_non_singular: Expect that this operator is non-singular.
  • is_self_adjoint: Expect that this operator is equal to its hermitian transpose. If diag.dtype is real, this is auto-set to True.
  • is_positive_definite: Expect that this operator is positive definite, meaning the quadratic form x^H A x has positive real part for all nonzero x. Note that we do not require the operator to be self-adjoint to be positive-definite. See: https://en.wikipedia.org/wiki/Positive-definite_matrix#Extension_for_non-symmetric_matrices
  • is_square: Expect that this operator acts like square [batch] matrices.
  • name: A name for this LinearOperator.

Properties

H

Returns the adjoint of the current LinearOperator.

Given A representing this LinearOperator, return A*. Note that calling self.adjoint() and self.H are equivalent.

Args:

  • name: A name for this Op.

Returns:

LinearOperator which represents the adjoint of this LinearOperator.

batch_shape

TensorShape of batch dimensions of this LinearOperator.

If this operator acts like the batch matrix A with A.shape = [B1,...,Bb, M, N], then this returns TensorShape([B1,...,Bb]), equivalent to A.shape[:-2]

Returns:

TensorShape, statically determined, may be undefined.

col

domain_dimension

Dimension (in the sense of vector spaces) of the domain of this operator.

If this operator acts like the batch matrix A with A.shape = [B1,...,Bb, M, N], then this returns N.

Returns:

Dimension object.

dtype

The DType of Tensors handled by this LinearOperator.

graph_parents

List of graph dependencies of this LinearOperator.

is_non_singular

is_positive_definite

is_self_adjoint

is_square

Return True/False depending on if this operator is square.

range_dimension

Dimension (in the sense of vector spaces) of the range of this operator.

If this operator acts like the batch matrix A with A.shape = [B1,...,Bb, M, N], then this returns M.

Returns:

Dimension object.

row

shape

TensorShape of this LinearOperator.

If this operator acts like the batch matrix A with A.shape = [B1,...,Bb, M, N], then this returns TensorShape([B1,...,Bb, M, N]), equivalent to A.shape.

Returns:

TensorShape, statically determined, may be undefined.

tensor_rank

Rank (in the sense of tensors) of matrix corresponding to this operator.

If this operator acts like the batch matrix A with A.shape = [B1,...,Bb, M, N], then this returns b + 2.

Args:

  • name: A name for this Op.

Returns:

Python integer, or None if the tensor rank is undefined.

Methods

add_to_tensor

View source

add_to_tensor(
    x,
    name='add_to_tensor'
)

Add matrix represented by this operator to x. Equivalent to A + x.

Args:

  • x: Tensor with same dtype and shape broadcastable to self.shape.
  • name: A name to give this Op.

Returns:

A Tensor with broadcast shape and same dtype as self.

adjoint

View source

adjoint(name='adjoint')

Returns the adjoint of the current LinearOperator.

Given A representing this LinearOperator, return A*. Note that calling self.adjoint() and self.H are equivalent.

Args:

  • name: A name for this Op.

Returns:

LinearOperator which represents the adjoint of this LinearOperator.

assert_non_singular

View source

assert_non_singular(name='assert_non_singular')

Returns an Op that asserts this operator is non singular.

This operator is considered non-singular if

ConditionNumber < max{100, range_dimension, domain_dimension} * eps,
eps := np.finfo(self.dtype.as_numpy_dtype).eps

Args:

  • name: A string name to prepend to created ops.

Returns:

An Assert Op, that, when run, will raise an InvalidArgumentError if the operator is singular.

assert_positive_definite

View source

assert_positive_definite(name='assert_positive_definite')

Returns an Op that asserts this operator is positive definite.

Here, positive definite means that the quadratic form x^H A x has positive real part for all nonzero x. Note that we do not require the operator to be self-adjoint to be positive definite.

Args:

  • name: A name to give this Op.

Returns:

An Assert Op, that, when run, will raise an InvalidArgumentError if the operator is not positive definite.

assert_self_adjoint

View source

assert_self_adjoint(name='assert_self_adjoint')

Returns an Op that asserts this operator is self-adjoint.

Here we check that this operator is exactly equal to its hermitian transpose.

Args:

  • name: A string name to prepend to created ops.

Returns:

An Assert Op, that, when run, will raise an InvalidArgumentError if the operator is not self-adjoint.

batch_shape_tensor

View source

batch_shape_tensor(name='batch_shape_tensor')

Shape of batch dimensions of this operator, determined at runtime.

If this operator acts like the batch matrix A with A.shape = [B1,...,Bb, M, N], then this returns a Tensor holding [B1,...,Bb].

Args:

  • name: A name for this Op.

Returns:

int32 Tensor

cholesky

View source

cholesky(name='cholesky')

Returns a Cholesky factor as a LinearOperator.

Given A representing this LinearOperator, if A is positive definite self-adjoint, return L, where A = L L^T, i.e. the cholesky decomposition.

Args:

  • name: A name for this Op.

Returns:

LinearOperator which represents the lower triangular matrix in the Cholesky decomposition.

Raises:

  • ValueError: When the LinearOperator is not hinted to be positive definite and self adjoint.

determinant

View source

determinant(name='det')

Determinant for every batch member.

Args:

  • name: A name for this Op.

Returns:

Tensor with shape self.batch_shape and same dtype as self.

Raises:

  • NotImplementedError: If self.is_square is False.

diag_part

View source

diag_part(name='diag_part')

Efficiently get the [batch] diagonal part of this operator.

If this operator has shape [B1,...,Bb, M, N], this returns a Tensor diagonal, of shape [B1,...,Bb, min(M, N)], where diagonal[b1,...,bb, i] = self.to_dense()[b1,...,bb, i, i].

my_operator = LinearOperatorDiag([1., 2.])

# Efficiently get the diagonal
my_operator.diag_part()
==> [1., 2.]

# Equivalent, but inefficient method
tf.linalg.diag_part(my_operator.to_dense())
==> [1., 2.]

Args:

  • name: A name for this Op.

Returns:

  • diag_part: A Tensor of same dtype as self.

domain_dimension_tensor

View source

domain_dimension_tensor(name='domain_dimension_tensor')

Dimension (in the sense of vector spaces) of the domain of this operator.

Determined at runtime.

If this operator acts like the batch matrix A with A.shape = [B1,...,Bb, M, N], then this returns N.

Args:

  • name: A name for this Op.

Returns:

int32 Tensor

inverse

View source

inverse(name='inverse')

Returns the Inverse of this LinearOperator.

Given A representing this LinearOperator, return a LinearOperator representing A^-1.

Args:

  • name: A name scope to use for ops added by this method.

Returns:

LinearOperator representing inverse of this matrix.

Raises:

  • ValueError: When the LinearOperator is not hinted to be non_singular.

log_abs_determinant

View source

log_abs_determinant(name='log_abs_det')

Log absolute value of determinant for every batch member.

Args:

  • name: A name for this Op.

Returns:

Tensor with shape self.batch_shape and same dtype as self.

Raises:

  • NotImplementedError: If self.is_square is False.

matmul

View source

matmul(
    x,
    adjoint=False,
    adjoint_arg=False,
    name='matmul'
)

Transform [batch] matrix x with left multiplication: x --> Ax.

# Make an operator acting like batch matrix A.  Assume A.shape = [..., M, N]
operator = LinearOperator(...)
operator.shape = [..., M, N]

X = ... # shape [..., N, R], batch matrix, R > 0.

Y = operator.matmul(X)
Y.shape
==> [..., M, R]

Y[..., :, r] = sum_j A[..., :, j] X[j, r]

Args:

  • x: LinearOperator or Tensor with compatible shape and same dtype as self. See class docstring for definition of compatibility.
  • adjoint: Python bool. If True, left multiply by the adjoint: A^H x.
  • adjoint_arg: Python bool. If True, compute A x^H where x^H is the hermitian transpose (transposition and complex conjugation).
  • name: A name for this Op.

Returns:

A LinearOperator or Tensor with shape [..., M, R] and same dtype as self.

matvec

View source

matvec(
    x,
    adjoint=False,
    name='matvec'
)

Transform [batch] vector x with left multiplication: x --> Ax.

# Make an operator acting like batch matric A.  Assume A.shape = [..., M, N]
operator = LinearOperator(...)

X = ... # shape [..., N], batch vector

Y = operator.matvec(X)
Y.shape
==> [..., M]

Y[..., :] = sum_j A[..., :, j] X[..., j]

Args:

  • x: Tensor with compatible shape and same dtype as self. x is treated as a [batch] vector meaning for every set of leading dimensions, the last dimension defines a vector. See class docstring for definition of compatibility.
  • adjoint: Python bool. If True, left multiply by the adjoint: A^H x.
  • name: A name for this Op.

Returns:

A Tensor with shape [..., M] and same dtype as self.

range_dimension_tensor

View source

range_dimension_tensor(name='range_dimension_tensor')

Dimension (in the sense of vector spaces) of the range of this operator.

Determined at runtime.

If this operator acts like the batch matrix A with A.shape = [B1,...,Bb, M, N], then this returns M.

Args:

  • name: A name for this Op.

Returns:

int32 Tensor

shape_tensor

View source

shape_tensor(name='shape_tensor')

Shape of this LinearOperator, determined at runtime.

If this operator acts like the batch matrix A with A.shape = [B1,...,Bb, M, N], then this returns a Tensor holding [B1,...,Bb, M, N], equivalent to tf.shape(A).

Args:

  • name: A name for this Op.

Returns:

int32 Tensor

solve

View source

solve(
    rhs,
    adjoint=False,
    adjoint_arg=False,
    name='solve'
)

Solve (exact or approx) R (batch) systems of equations: A X = rhs.

The returned Tensor will be close to an exact solution if A is well conditioned. Otherwise closeness will vary. See class docstring for details.

Examples:

# Make an operator acting like batch matrix A.  Assume A.shape = [..., M, N]
operator = LinearOperator(...)
operator.shape = [..., M, N]

# Solve R > 0 linear systems for every member of the batch.
RHS = ... # shape [..., M, R]

X = operator.solve(RHS)
# X[..., :, r] is the solution to the r'th linear system
# sum_j A[..., :, j] X[..., j, r] = RHS[..., :, r]

operator.matmul(X)
==> RHS

Args:

  • rhs: Tensor with same dtype as this operator and compatible shape. rhs is treated like a [batch] matrix meaning for every set of leading dimensions, the last two dimensions defines a matrix. See class docstring for definition of compatibility.
  • adjoint: Python bool. If True, solve the system involving the adjoint of this LinearOperator: A^H X = rhs.
  • adjoint_arg: Python bool. If True, solve A X = rhs^H where