tf.contrib.distributions.PoissonLogNormalQuadratureCompound

View source on GitHub

PoissonLogNormalQuadratureCompound distribution.

Inherits From: Distribution

The PoissonLogNormalQuadratureCompound is an approximation to a Poisson-LogNormal compound distribution, i.e.,

p(k|loc, scale)
= int_{R_+} dl LogNormal(l | loc, scale) Poisson(k | l)
approx= sum{ prob[d] Poisson(k | lambda(grid[d])) : d=0, ..., deg-1 }

By default, the grid is chosen as quantiles of the LogNormal distribution parameterized by loc, scale and the prob vector is [1. / quadrature_size]*quadrature_size.

In the non-approximation case, a draw from the LogNormal prior represents the Poisson rate parameter. Unfortunately, the non-approximate distribution lacks an analytical probability density function (pdf). Therefore the PoissonLogNormalQuadratureCompound class implements an approximation based on quadrature.

Mathematical Details

The PoissonLogNormalQuadratureCompound approximates a Poisson-LogNormal compound distribution. Using variable-substitution and numerical quadrature (default: based on LogNormal quantiles) we can redefine the distribution to be a parameter-less convex combination of deg different Poisson samples.

That is, defined over positive integers, this distribution is parameterized by a (batch of) loc and scale scalars.

The probability density function (pdf) is,

pdf(k | loc, scale, deg)
  = sum{ prob[d] Poisson(k | lambda=exp(grid[d]))
        : d=0, ..., deg-1 }

Examples

import tensorflow_probability as tfp
tfd = tfp.distributions

# Create two batches of PoissonLogNormalQuadratureCompounds, one with
# prior `loc = 0.` and another with `loc = 1.` In both cases `scale = 1.`
pln = tfd.PoissonLogNormalQuadratureCompound(
    loc=[0., -0.5],
    scale=1.,
    quadrature_size=10,
    validate_args=True)

<!-- Tabular view -->
 <table class="responsive fixed orange">
<colgroup><col width="214px"><col></colgroup>
<tr><th colspan="2"><h2 class="add-link">Args</h2></th></tr>

<tr>
<td>
`loc`
</td>
<td>
`float`-like (batch of) scalar `Tensor`; the location parameter of
the LogNormal prior.
</td>
</tr><tr>
<td>
`scale`
</td>
<td>
`float`-like (batch of) scalar `Tensor`; the scale parameter of
the LogNormal prior.
</td>
</tr><tr>
<td>
`quadrature_size`
</td>
<td>
Python `int` scalar representing the number of quadrature
points.
</td>
</tr><tr>
<td>
`quadrature_fn`
</td>
<td>
Python callable taking `loc`, `scale`,
`quadrature_size`, `validate_args` and returning `tuple(grid, probs)`
representing the LogNormal grid and corresponding normalized weight.
normalized) weight.
Default value: `quadrature_scheme_lognormal_quantiles`.
</td>
</tr><tr>
<td>
`validate_args`
</td>
<td>
Python `bool`, default `False`. When `True` distribution
parameters are checked for validity despite possibly degrading runtime
performance. When `False` invalid inputs may silently render incorrect
outputs.
</td>
</tr><tr>
<td>
`allow_nan_stats`
</td>
<td>
Python `bool`, default `True`. When `True`,
statistics (e.g., mean, mode, variance) use the value "`NaN`" to
indicate the result is undefined. When `False`, an exception is raised
if one or more of the statistic's batch members are undefined.
</td>
</tr><tr>
<td>
`name`
</td>
<td>
Python `str` name prefixed to Ops created by this class.
</td>
</tr>
</table>



<!-- Tabular view -->
 <table class="responsive fixed orange">
<colgroup><col width="214px"><col></colgroup>
<tr><th colspan="2"><h2 class="add-link">Raises</h2></th></tr>

<tr>
<td>
`TypeError`
</td>
<td>
if `quadrature_grid` and `quadrature_probs` have different base
`dtype`.
</td>
</tr>
</table>





<!-- Tabular view -->
 <table class="responsive fixed orange">
<colgroup><col width="214px"><col></colgroup>
<tr><th colspan="2"><h2 class="add-link">Attributes</h2></th></tr>

<tr>
<td>
`allow_nan_stats`
</td>
<td>
Python `bool` describing behavior when a stat is undefined.

Stats return +/- infinity when it makes sense. E.g., the variance of a
Cauchy distribution is infinity. However, sometimes the statistic is
undefined, e.g., if a distribution's pdf does not achieve a maximum within
the support of the distribution, the mode is undefined. If the mean is
undefined, then by definition the variance is undefined. E.g. the mean for
Student's T for df = 1 is undefined (no clear way to say it is either + or -
infinity), so the variance = E[(X - mean)**2] is also undefined.
</td>
</tr><tr>
<td>
`batch_shape`
</td>
<td>
Shape of a single sample from a single event index as a `TensorShape`.

May be partially defined or unknown.

The batch dimensions are indexes into independent, non-identical
parameterizations of this distribution.
</td>
</tr><tr>
<td>
`distribution`
</td>
<td>
Base Poisson parameterized by a quadrature grid.
</td>
</tr><tr>
<td>
`dtype`
</td>
<td>
The `DType` of `Tensor`s handled by this `Distribution`.
</td>
</tr><tr>
<td>
`event_shape`
</td>
<td>
Shape of a single sample from a single batch as a `TensorShape`.

May be partially defined or unknown.
</td>
</tr><tr>
<td>
`loc`
</td>
<td>
Location parameter of the LogNormal prior.
</td>
</tr><tr>
<td>
`mixture_distribution`
</td>
<td>
Distribution which randomly selects a Poisson with quadrature param.
</td>
</tr><tr>
<td>
`name`
</td>
<td>
Name prepended to all ops created by this `Distribution`.
</td>
</tr><tr>
<td>
`parameters`
</td>
<td>
Dictionary of parameters used to instantiate this `Distribution`.
</td>
</tr><tr>
<td>
`quadrature_size`
</td>
<td>

</td>
</tr><tr>
<td>
`reparameterization_type`
</td>
<td>
Describes how samples from the distribution are reparameterized.

Currently this is one of the static instances
`distributions.FULLY_REPARAMETERIZED`
or `distributions.NOT_REPARAMETERIZED`.
</td>
</tr><tr>
<td>
`scale`
</td>
<td>
Scale parameter of the LogNormal prior.
</td>
</tr><tr>
<td>
`validate_args`
</td>
<td>
Python `bool` indicating possibly expensive checks are enabled.
</td>
</tr>
</table>



## Methods

<h3 id="batch_shape_tensor"><code>batch_shape_tensor</code></h3>

<a target="_blank" href="https://github.com/tensorflow/tensorflow/blob/v1.15.0/tensorflow/python/ops/distributions/distribution.py#L637-L654">View source</a>

<pre class="devsite-click-to-copy prettyprint lang-py tfo-signature-link">
<code>batch_shape_tensor(
    name='batch_shape_tensor'
)
</code></pre>

Shape of a single sample from a single event index as a 1-D `Tensor`.

The batch dimensions are indexes into independent, non-identical
parameterizations of this distribution.

<!-- Tabular view -->
 <table class="responsive fixed orange">
<colgroup><col width="214px"><col></colgroup>
<tr><th colspan="2">Args</th></tr>

<tr>
<td>
`name`
</td>
<td>
name to give to the op
</td>
</tr>
</table>



<!-- Tabular view -->
 <table class="responsive fixed orange">
<colgroup><col width="214px"><col></colgroup>
<tr><th colspan="2">Returns</th></tr>

<tr>
<td>
`batch_shape`
</td>
<td>
`Tensor`.
</td>
</tr>
</table>



<h3 id="cdf"><code>cdf</code></h3>

<a target="_blank" href="https://github.com/tensorflow/tensorflow/blob/v1.15.0/tensorflow/python/ops/distributions/distribution.py#L881-L898">View source</a>

<pre class="devsite-click-to-copy prettyprint lang-py tfo-signature-link">
<code>cdf(
    value, name='cdf'
)
</code></pre>

Cumulative distribution function.

Given random variable `X`, the cumulative distribution function `cdf` is:

```none
cdf(x) := P[X <= x]

Args
value float or double Tensor.
name Python str prepended to names of ops created by this function.

Returns
cdf a Tensor of shape sample_shape(x) + self.batch_shape with values of type self.dtype.

copy

View source

Creates a deep copy of the distribution.

Args
**override_parameters_kwargs String/value dictionary of initialization arguments to override with new values.

Returns
distribution A new instance of type(self) initialized from the union of self.parameters and override_parameters_kwargs, i.e., dict(self.parameters, **override_parameters_kwargs).

covariance

View source

Covariance.

Covariance is (possibly) defined only for non-scalar-event distributions.

For example, for a length-k, vector-valued distribution, it is calculated as,

Cov[i, j] = Covariance(X_i, X_j) = E[(X_i - E[X_i]) (X_j - E[X_j])]

where Cov is a (batch of) k x k matrix, 0 <= (i, j) < k, and E denotes expectation.

Alternatively, for non-vector, multivariate distributions (e.g., matrix-valued, Wishart), Covariance shall return a (batch of) matrices under some vectorization of the events, i.e.,

Cov[i, j] = Covariance(Vec(X)_i, Vec(X)_j) = [as above]

where Cov is a (batch of) k' x k' matrices, 0 <= (i, j) < k' = reduce_prod(event_shape), and Vec is some function mapping indices of this distribution's event dimensions to indices of a length-k' vector.

Args
name Python str prepended to names of ops created by this function.

Returns
covariance Floating-point Tensor with shape [B1, ..., Bn, k', k'] where the first n dimensions are batch coordinates and k' = reduce_prod(self.event_shape).

cross_entropy

View source

Computes the (Shannon) cross entropy.

Denote this distribution (self) by P and the other distribution by Q. Assuming P, Q are absolutely continuous with respect to one another and permit densities p(x) dr(x) and q(x) dr(x), (Shanon) cross entropy is defined as:

H[P, Q] = E_p[-log q(X)] = -int_F p(x) log q(x) dr(x)

where F denotes the support of the random variable X ~ P.

Args
other tfp.distributions.Distribution instance.
name Python str prepended to names of ops created by this function.

Returns
cross_entropy self.dtype Tensor with shape [B1, ..., Bn] representing n different calculations of (Shanon) cross entropy.

entropy

View source

Shannon entropy in nats.

event_shape_tensor

View source

Shape of a single sample from a single batch as a 1-D int32 Tensor.

Args
name name to give to the op

Returns
event_shape Tensor.

is_scalar_batch

View source

Indicates that batch_shape == [].

Args
name Python str prepended to names of ops created by this function.

Returns
is_scalar_batch bool scalar Tensor.

is_scalar_event

View source

Indicates that event_shape == [].

Args
name Python str prepended to names of ops created by this function.

Returns
is_scalar_event bool scalar Tensor.

kl_divergence

View source

Computes the Kullback--Leibler divergence.

Denote this distribution (self) by p and the other distribution by q. Assuming p, q are absolutely continuous with respect to reference measure r, the KL divergence is defined as:

KL[p, q] = E_p[log(p(X)/q(X))]
         = -int_F p(x) log q(x) dr(x) + int_F p(x) log p(x) dr(x)
         = H[p, q] - H[p]

where F denotes the support of the random variable X ~ p, H[., .] denotes (Shanon) cross entropy, and H[.] denotes (Shanon) entropy.

Args
other tfp.distributions.Distribution instance.
name Python str prepended to names of ops created by this function.

Returns
kl_divergence self.dtype Tensor with shape [B1, ..., Bn] representing n different calculations of the Kullback-Leibler divergence.

log_cdf

View source

Log cumulative distribution function.

Given random variable X, the cumulative distribution function cdf is:

log_cdf(x) := Log[ P[X <= x] ]

Often, a numerical approximation can be used for log_cdf(x) that yields a more accurate answer than simply taking the logarithm of the cdf when x << -1.

Args
value float or double Tensor.
name Python str prepended to names of ops created by this function.

Returns
logcdf a Tensor of shape sample_shape(x) + self.batch_shape with values of type self.dtype.

log_prob

View source

Log probability density/mass function.

Args
value float or double Tensor.
name Python str prepended to names of ops created by this function.

Returns
log_prob a Tensor of shape sample_shape(x) + self.batch_shape with values of type self.dtype.

log_survival_function

View source

Log survival function.

Given random variable X, the survival function is defined:

log_survival_function(x) = Log[ P[X > x] ]
                         = Log[ 1 - P[X <= x] ]
                         = Log[ 1 - cdf(x) ]

Typically, different numerical approximations can be used for the log survival function, which are more accurate than 1 - cdf(x) when x >> 1.

Args
value float or double Tensor.
name Python str prepended to names of ops created by this function.

Returns
Tensor of shape sample_shape(x) + self.batch_shape with values of type self.dtype.

mean

View source

Mean.

mode

View source

Mode.

param_shapes

View source

Shapes of parameters given the desired shape of a call to sample().

This is a class method that describes what key/value arguments are required to instantiate the given Distribution so that a particular shape is returned for that instance's call to sample().

Subclasses should override class method _param_shapes.

Args
sample_shape Tensor or python list/tuple. Desired shape of a call to sample().
name name to prepend ops with.

Returns
dict of parameter name to Tensor shapes.

param_static_shapes

View source

param_shapes with static (i.e. TensorShape) shapes.

This is a class method that describes what key/value arguments are required to instantiate the given Distribution so that a particular shape is returned for that instance's call to sample(). Assumes that the sample's shape is known statically.

Subclasses should override class method _param_shapes to return constant-valued tensors when constant values are fed.

Args
sample_shape TensorShape or python list/tuple. Desired shape of a call to sample().

Returns
dict of parameter name to TensorShape.

Raises
ValueError if sample_shape is a TensorShape and is not fully defined.

prob

View source

Probability density/mass function.

Args
value float or double Tensor.
name Python str prepended to names of ops created by this function.

Returns
prob a Tensor of shape sample_shape(x) + self.batch_shape with values of type self.dtype.

quantile

View source

Quantile function. Aka "inverse cdf" or "percent point function".

Given random variable X and p in [0, 1], the quantile is:

quantile(p) := x such that P[X <= x] == p

Args
value float or double Tensor.
name Python str prepended to names of ops created by this function.

Returns
quantile a Tensor of shape sample_shape(x) + self.batch_shape with values of type self.dtype.

sample

View source

Generate samples of the specified shape.

Note that a call to sample() without arguments will generate a single sample.

Args
sample_shape 0D or 1D int32 Tensor. Shape of the generated samples.
seed Python integer seed for RNG
name name to give to the op.

Returns
samples a Tensor with prepended dimensions sample_shape.

stddev

View source

Standard deviation.

Standard deviation is defined as,

stddev = E[(X - E[X])**2]**0.5

where X is the random variable associated with this distribution, E denotes expectation, and stddev.shape = batch_shape + event_shape.

Args
name Python str prepended to names of ops created by this function.

Returns
stddev Floating-point Tensor with shape identical to batch_shape + event_shape, i.e., the same shape as self.mean().

survival_function

View source

Survival function.

Given random variable X, the survival function is defined:

survival_function(x) = P[X > x]
                     = 1 - P[X <= x]
                     = 1 - cdf(x).

Args
value float or double Tensor.
name Python str prepended to names of ops created by this function.

Returns
Tensor of shape sample_shape(x) + self.batch_shape with values of type self.dtype.

variance

View source

Variance.

Variance is defined as,

Var = E[(X - E[X])**2]

where X is the random variable associated with this distribution, E denotes expectation, and Var.shape = batch_shape + event_shape.

Args
name Python str prepended to names of ops created by this function.

Returns
variance Floating-point Tensor with shape identical to batch_shape + event_shape, i.e., the same shape as self.mean().