TF 2.0 is out! Get hands-on practice at TF World, Oct 28-31. Use code TF20 for 20% off select passes. Register now

tf.contrib.rnn.LayerNormBasicLSTMCell

View source on GitHub

Class LayerNormBasicLSTMCell

LSTM unit with layer normalization and recurrent dropout.

Inherits From: RNNCell

This class adds layer normalization and recurrent dropout to a basic LSTM unit. Layer normalization implementation is based on:

https://arxiv.org/abs/1607.06450.

"Layer Normalization" Jimmy Lei Ba, Jamie Ryan Kiros, Geoffrey E. Hinton

and is applied before the internal nonlinearities. Recurrent dropout is base on:

https://arxiv.org/abs/1603.05118

"Recurrent Dropout without Memory Loss" Stanislau Semeniuta, Aliaksei Severyn, Erhardt Barth.

__init__

View source

__init__(
    num_units,
    forget_bias=1.0,
    input_size=None,
    activation=tf.math.tanh,
    layer_norm=True,
    norm_gain=1.0,
    norm_shift=0.0,
    dropout_keep_prob=1.0,
    dropout_prob_seed=None,
    reuse=None
)

Initializes the basic LSTM cell.

Args:

  • num_units: int, The number of units in the LSTM cell.
  • forget_bias: float, The bias added to forget gates (see above).
  • input_size: Deprecated and unused.
  • activation: Activation function of the inner states.
  • layer_norm: If True, layer normalization will be applied.
  • norm_gain: float, The layer normalization gain initial value. If layer_norm has been set to False, this argument will be ignored.
  • norm_shift: float, The layer normalization shift initial value. If layer_norm has been set to False, this argument will be ignored.
  • dropout_keep_prob: unit Tensor or float between 0 and 1 representing the recurrent dropout probability value. If float and 1.0, no dropout will be applied.
  • dropout_prob_seed: (optional) integer, the randomness seed.
  • reuse: (optional) Python boolean describing whether to reuse variables in an existing scope. If not True, and the existing scope already has the given variables, an error is raised.

Properties

graph

DEPRECATED FUNCTION

output_size

Integer or TensorShape: size of outputs produced by this cell.

scope_name

state_size

size(s) of state(s) used by this cell.

It can be represented by an Integer, a TensorShape or a tuple of Integers or TensorShapes.

Methods

get_initial_state

View source

get_initial_state(
    inputs=None,
    batch_size=None,
    dtype=None
)

zero_state

View source

zero_state(
    batch_size,
    dtype
)

Return zero-filled state tensor(s).

Args:

  • batch_size: int, float, or unit Tensor representing the batch size.
  • dtype: the data type to use for the state.

Returns:

If state_size is an int or TensorShape, then the return value is a N-D tensor of shape [batch_size, state_size] filled with zeros.

If state_size is a nested list or tuple, then the return value is a nested list or tuple (of the same structure) of 2-D tensors with the shapes [batch_size, s] for each s in state_size.