Missed TensorFlow World? Check out the recap. Learn more

tf.tpu.experimental.AdagradParameters

View source on GitHub

Class AdagradParameters

Optimization parameters for Adagrad with TPU embeddings.

Aliases:

Pass this to tf.estimator.tpu.experimental.EmbeddingConfigSpec via the optimization_parameters argument to set the optimizer and its parameters. See the documentation for tf.estimator.tpu.experimental.EmbeddingConfigSpec for more details.

estimator = tf.estimator.tpu.TPUEstimator(
    ...
    embedding_spec=tf.estimator.tpu.experimental.EmbeddingConfigSpec(
        ...
        optimization_parameters=tf.tpu.experimental.AdagradParameters(0.1),
        ...))

__init__

View source

__init__(
    learning_rate,
    initial_accumulator=0.1,
    use_gradient_accumulation=True,
    clip_weight_min=None,
    clip_weight_max=None
)

Optimization parameters for Adagrad.

Args:

  • learning_rate: used for updating embedding table.
  • initial_accumulator: initial accumulator for Adagrad.
  • use_gradient_accumulation: setting this to False makes embedding gradients calculation less accurate but faster. Please see optimization_parameters.proto for details. for details.
  • clip_weight_min: the minimum value to clip by; None means -infinity.
  • clip_weight_max: the maximum value to clip by; None means +infinity.