Save the date! Google I/O returns May 18-20 Register now


View source on GitHub

Parses tf.Examples to extract tensors for given feature_columns.

This is a wrapper of ''.


columns_to_tensor = parse_feature_columns_from_examples(

# Where my_features are:
# Define features and transformations
sparse_feature_a = sparse_column_with_keys(
    column_name="sparse_feature_a", keys=["AB", "CD", ...])

embedding_feature_a = embedding_column(
    sparse_id_column=sparse_feature_a, dimension=3, combiner="sum")

sparse_feature_b = sparse_column_with_hash_bucket(
    column_name="sparse_feature_b", hash_bucket_size=1000)

embedding_feature_b = embedding_column(
    sparse_id_column=sparse_feature_b, dimension=16, combiner="sum")

crossed_feature_a_x_b = crossed_column(
    columns=[sparse_feature_a, sparse_feature_b], hash_bucket_size=10000)

real_feature = real_valued_column("real_feature")
real_feature_buckets = bucketized_column(
    source_column=real_feature, boundaries=[...])

my_features = [embedding_feature_b, real_feature_buckets, embedding_feature_a]

serialized A vector (1-D Tensor) of strings, a batch of binary serialized Example protos.
feature_columns An iterable containing all the feature columns. All items should be instances of classes derived from _FeatureColumn.
name A name for this operation (optional).
example_names A vector (1-D Tensor) of strings (optional), the names of the serialized protos in the batch.

A dict mapping FeatureColumn to Tensor and SparseTensor values.