Missed TensorFlow World? Check out the recap. Learn more

tf.compat.v2.io.serialize_many_sparse

View source on GitHub

Serialize N-minibatch SparseTensor into an [N, 3] Tensor.

tf.compat.v2.io.serialize_many_sparse(
    sp_input,
    out_type=tf.dtypes.string,
    name=None
)

The SparseTensor must have rank R greater than 1, and the first dimension is treated as the minibatch dimension. Elements of the SparseTensor must be sorted in increasing order of this first dimension. The serialized SparseTensor objects going into each row of the output Tensor will have rank R-1.

The minibatch size N is extracted from sparse_shape[0].

Args:

  • sp_input: The input rank R SparseTensor.
  • out_type: The dtype to use for serialization.
  • name: A name prefix for the returned tensors (optional).

Returns:

A matrix (2-D Tensor) with N rows and 3 columns. Each column represents serialized SparseTensor's indices, values, and shape (respectively).

Raises:

  • TypeError: If sp_input is not a SparseTensor.