Help protect the Great Barrier Reef with TensorFlow on Kaggle Join Challenge


View source on GitHub

Optimization parameters for stochastic gradient descent for TPU embeddings.

Pass this to tf.estimator.tpu.experimental.EmbeddingConfigSpec via the optimization_parameters argument to set the optimizer and its parameters. See the documentation for tf.estimator.tpu.experimental.EmbeddingConfigSpec for more details.

estimator = tf.estimator.tpu.TPUEstimator(

learning_rate a floating point value. The learning rate.
clip_weight_min the minimum value to clip by; None means -infinity.
clip_weight_max the maximum value to clip by; None means +infinity.