Stay organized with collections Save and categorize content based on your preferences.

View source on GitHub

A sequence of categorical terms where ids use a vocabulary file.

Pass this to embedding_column or indicator_column to convert sequence categorical data into dense representation for input to sequence NN, such as RNN.


states = sequence_categorical_column_with_vocabulary_file(
    key='states', vocabulary_file='/us/states.txt', vocabulary_size=50,
states_embedding = embedding_column(states, dimension=10)
columns = [states_embedding]

features =, features=make_parse_example_spec(columns))
input_layer, sequence_length = sequence_input_layer(features, columns)

rnn_cell = tf.compat.v1.nn.rnn_cell.BasicRNNCell(hidden_size)
outputs, state = tf.compat.v1.nn.dynamic_rnn(
    rnn_cell, inputs=input_layer, sequence_length=sequence_length)

key A unique string identifying the input feature.
vocabulary_file The vocabulary file name.
vocabulary_size Number of the elements in the vocabulary. This must be no greater than length of vocabulary_file, if less than length, later values are ignored. If None, it is set to the length of vocabulary_file.
num_oov_buckets Non-negative integer, the number of out-of-vocabulary buckets. All out-of-vocabulary inputs will be assigned IDs in the range [vocabulary_size, vocabulary_size+num_oov_buckets) based on a hash of the input value. A positive num_oov_buckets can not be specified with default_value.
default_value The integer ID value to return for out-of-vocabulary feature values, defaults to -1. This can not be specified with a positive num_oov_buckets.
dtype The type of features. Only string and integer types are supported.

A _SequenceCategoricalColumn.

ValueError vocabulary_file is missing or cannot be opened.
ValueError vocabulary_size is missing or < 1.
ValueError num_oov_buckets is a negative integer.
ValueError num_oov_buckets and default_value are both specified.
ValueError dtype is neither string nor integer.