Google I/O is a wrap! Catch up on TensorFlow sessions

Module: tf.contrib.distributions.bijectors

Bijector Ops.

Classes

`class AbsoluteValue`: Computes `Y = g(X) = Abs(X)`, element-wise.

`class Affine`: Compute `Y = g(X; shift, scale) = scale @ X + shift`.

`class AffineLinearOperator`: Compute `Y = g(X; shift, scale) = scale @ X + shift`.

`class AffineScalar`: Compute `Y = g(X; shift, scale) = scale * X + shift`.

`class BatchNormalization`: Compute `Y = g(X) s.t.

`class Bijector`: Interface for transformations of a `Distribution` sample.

`class Chain`: Bijector which applies a sequence of bijectors.

`class CholeskyOuterProduct`: Compute `g(X) = X @ X.T`; X is lower-triangular, positive-diagonal matrix.

`class ConditionalBijector`: Conditional Bijector is a Bijector that allows intrinsic conditioning.

`class Exp`: Compute `Y = g(X) = exp(X)`.

`class FillTriangular`: Transforms vectors to triangular.

`class Gumbel`: Compute `Y = g(X) = exp(-exp(-(X - loc) / scale))`.

`class Identity`: Compute Y = g(X) = X.

`class Inline`: Bijector constructed from custom callables.

`class Invert`: Bijector which inverts another Bijector.

`class Kumaraswamy`: Compute `Y = g(X) = (1 - (1 - X)**(1 / b))**(1 / a), X in [0, 1]`.

`class MaskedAutoregressiveFlow`: Affine MaskedAutoregressiveFlow bijector for vector-valued events.

`class MatrixInverseTriL`: Computes `g(L) = inv(L)`, where `L` is a lower-triangular matrix.

`class Ordered`: Bijector which maps a tensor x_k that has increasing elements in the last

`class Permute`: Permutes the rightmost dimension of a `Tensor`.

`class PowerTransform`: Compute `Y = g(X) = (1 + X * c)**(1 / c), X >= -1 / c`.

`class RealNVP`: RealNVP "affine coupling layer" for vector-valued events.

`class Reshape`: Reshapes the `event_shape` of a `Tensor`.

`class ScaleTriL`: Transforms unconstrained vectors to TriL matrices with positive diagonal.

`class Sigmoid`: Bijector which computes `Y = g(X) = 1 / (1 + exp(-X))`.

`class SinhArcsinh`: Compute `Y = g(X) = Sinh( (Arcsinh(X) + skewness) * tailweight )`.

`class SoftmaxCentered`: Bijector which computes `Y = g(X) = exp([X 0]) / sum(exp([X 0]))`.

`class Softplus`: Bijector which computes `Y = g(X) = Log[1 + exp(X)]`.

`class Softsign`: Bijector which computes `Y = g(X) = X / (1 + |X|)`.

`class Square`: Compute `g(X) = X^2`; X is a positive real number.

`class TransformDiagonal`: Applies a Bijector to the diagonal of a matrix.

Functions

`masked_autoregressive_default_template(...)`: Build the Masked Autoregressive Density Estimator (Germain et al., 2015). (deprecated)

`masked_dense(...)`: A autoregressively masked dense layer. (deprecated)

`real_nvp_default_template(...)`: Build a scale-and-shift function using a multi-layer neural network. (deprecated)

[{ "type": "thumb-down", "id": "missingTheInformationINeed", "label":"Missing the information I need" },{ "type": "thumb-down", "id": "tooComplicatedTooManySteps", "label":"Too complicated / too many steps" },{ "type": "thumb-down", "id": "outOfDate", "label":"Out of date" },{ "type": "thumb-down", "id": "samplesCodeIssue", "label":"Samples / code issue" },{ "type": "thumb-down", "id": "otherDown", "label":"Other" }]
[{ "type": "thumb-up", "id": "easyToUnderstand", "label":"Easy to understand" },{ "type": "thumb-up", "id": "solvedMyProblem", "label":"Solved my problem" },{ "type": "thumb-up", "id": "otherUp", "label":"Other" }]