![]() |
A classifier for TensorFlow Linear and DNN joined training models.
Inherits From: Estimator
tf.contrib.learn.DNNLinearCombinedClassifier(
model_dir=None, n_classes=2, weight_column_name=None,
linear_feature_columns=None, linear_optimizer=None, _joint_linear_weights=False,
dnn_feature_columns=None, dnn_optimizer=None, dnn_hidden_units=None,
dnn_activation_fn=tf.nn.relu, dnn_dropout=None, gradient_clip_norm=None,
enable_centered_bias=False, config=None, feature_engineering_fn=None,
embedding_lr_multipliers=None, input_layer_min_slice_size=None, label_keys=None,
fix_global_step_increment_bug=False
)
THIS CLASS IS DEPRECATED. See contrib/learn/README.md for general migration instructions.
Example:
sparse_feature_a = sparse_column_with_hash_bucket(...)
sparse_feature_b = sparse_column_with_hash_bucket(...)
sparse_feature_a_x_sparse_feature_b = crossed_column(...)
sparse_feature_a_emb = embedding_column(sparse_id_column=sparse_feature_a,
...)
sparse_feature_b_emb = embedding_column(sparse_id_column=sparse_feature_b,
...)
estimator = DNNLinearCombinedClassifier(
# common settings
n_classes=n_classes,
weight_column_name=weight_column_name,
# wide settings
linear_feature_columns=[sparse_feature_a_x_sparse_feature_b],
linear_optimizer=tf.compat.v1.train.FtrlOptimizer(...),
# deep settings
dnn_feature_columns=[sparse_feature_a_emb, sparse_feature_b_emb],
dnn_hidden_units=[1000, 500, 100],
dnn_optimizer=tf.compat.v1.train.AdagradOptimizer(...))
# Input builders
def input_fn_train: # returns x, y (where y represents label's class index).
...
def input_fn_eval: # returns x, y (where y represents label's class index).
...
def input_fn_predict: # returns x, None.
...
estimator.fit(input_fn=input_fn_train)
estimator.evaluate(input_fn=input_fn_eval)
# predict_classes returns class indices.
estimator.predict_classes(input_fn=input_fn_predict)
If the user specifies label_keys
in constructor, labels must be strings from
the label_keys
vocabulary. Example:
label_keys = ['label0', 'label1', 'label2']
estimator = DNNLinearCombinedClassifier(
n_classes=n_classes,
linear_feature_columns=[sparse_feature_a_x_sparse_feature_b],
dnn_feature_columns=[sparse_feature_a_emb, sparse_feature_b_emb],
dnn_hidden_units=[1000, 500, 100],
label_keys=label_keys)
def input_fn_train: # returns x, y (where y is one of label_keys).
pass
estimator.fit(input_fn=input_fn_train)
def input_fn_eval: # returns x, y (where y is one of label_keys).
pass
estimator.evaluate(input_fn=input_fn_eval)
def input_fn_predict: # returns x, None
# predict_classes returns one of label_keys.
estimator.predict_classes(input_fn=input_fn_predict)
Input of fit
and evaluate
should have following features,
otherwise there will be a KeyError
:
- if
weight_column_name
is notNone
, a feature withkey=weight_column_name
whose value is aTensor
. - for each
column
indnn_feature_columns
+linear_feature_columns
:- if
column
is aSparseColumn
, a feature withkey=column.name
whosevalue
is aSparseTensor
. - if
column
is aWeightedSparseColumn
, two features: the first withkey
the id column name, the second withkey
the weight column name. Both features'value
must be aSparseTensor
. - if
column
is aRealValuedColumn, a feature with
key=column.namewhose
valueis a
Tensor`.
- if
Args | |
---|---|
model_dir
|
Directory to save model parameters, graph and etc. This can also be used to load checkpoints from the directory into a estimator to continue training a previously saved model. |
n_classes
|
number of label classes. Default is binary classification. Note that class labels are integers representing the class index (i.e. values from 0 to n_classes-1). For arbitrary label values (e.g. string labels), convert to class indices first. |
weight_column_name
|
A string defining feature column name representing weights. It is used to down weight or boost examples during training. It will be multiplied by the loss of the example. |
linear_feature_columns
|
An iterable containing all the feature columns
used by linear part of the model. All items in the set must be
instances of classes derived from FeatureColumn .
|
linear_optimizer
|
An instance of tf.Optimizer used to apply gradients to
the linear part of the model. If None , will use a FTRL optimizer.
|
_joint_linear_weights
|
If True a single (possibly partitioned) variable will be used to store the linear model weights. It's faster, but requires all columns are sparse and have the 'sum' combiner. |
dnn_feature_columns
|
An iterable containing all the feature columns used
by deep part of the model. All items in the set must be instances of
classes derived from FeatureColumn .
|
dnn_optimizer
|
An instance of tf.Optimizer used to apply gradients to
the deep part of the model. If None , will use an Adagrad optimizer.
|
dnn_hidden_units
|
List of hidden units per layer. All layers are fully connected. |
dnn_activation_fn
|
Activation function applied to each layer. If None ,
will use tf.nn.relu .
|
dnn_dropout
|
When not None, the probability we will drop out a given coordinate. |
gradient_clip_norm
|
A float > 0. If provided, gradients are clipped to their global norm with this clipping ratio. See tf.clip_by_global_norm for more details. |
enable_centered_bias
|
A bool. If True, estimator will learn a centered bias variable for each class. Rest of the model structure learns the residual after centered bias. |
config
|
RunConfig object to configure the runtime settings. |
feature_engineering_fn
|
Feature engineering function. Takes features and
labels which are the output of input_fn and returns features and
labels which will be fed into the model.
|
embedding_lr_multipliers
|
Optional. A dictionary from EmbeddingColumn to
a float multiplier. Multiplier will be used to multiply with
learning rate for the embedding variables.
|
input_layer_min_slice_size
|
Optional. The min slice size of input layer partitions. If not provided, will use the default of 64M. |
label_keys
|
Optional list of strings with size [n_classes] defining the
label vocabulary. Only supported for n_classes > 2.
|
fix_global_step_increment_bug
|
If False , the estimator needs two fit
steps to optimize both linear and dnn parts. If True , this bug is
fixed. New users must set this to True , but it the default value is
False for backwards compatibility.
|
Raises | |
---|---|
ValueError
|
If n_classes < 2.
|
ValueError
|
If both linear_feature_columns and dnn_features_columns
are empty at the same time.
|
Attributes | |
---|---|
config
|
|
model_dir
|
Returns a path in which the eval process will look for checkpoints. |
model_fn
|
Returns the model_fn which is bound to self.params. |
Methods
evaluate
evaluate(
x=None, y=None, input_fn=None, feed_fn=None, batch_size=None, steps=None,
metrics=None, name=None, checkpoint_path=None, hooks=None, log_progress=True
)
See Evaluable
. (deprecated arguments)
Raises | |
---|---|
ValueError
|
If at least one of x or y is provided, and at least one of
input_fn or feed_fn is provided.
Or if metrics is not None or dict .
|
export
export(
export_dir, input_fn=None, input_feature_key=None, use_deprecated_input_fn=True,
signature_fn=None, default_batch_size=1, exports_to_keep=None
)
See BasEstimator.export. (deprecated)
export_savedmodel
export_savedmodel(
export_dir_base, serving_input_fn, default_output_alternative_key=None,
assets_extra=None, as_text=False, checkpoint_path=None,
graph_rewrite_specs=(GraphRewriteSpec((tag_constants.SERVING,), ()),),
strip_default_attrs=False
)
Exports inference graph as a SavedModel into given dir.
Args | |
---|---|
export_dir_base
|
A string containing a directory to write the exported graph and checkpoints. |
serving_input_fn
|
A function that takes no argument and
returns an InputFnOps .
|
default_output_alternative_key
|
the name of the head to serve when none is specified. Not needed for single-headed models. |
assets_extra
|
A dict specifying how to populate the assets.extra directory
within the exported SavedModel. Each key should give the destination
path (including the filename) relative to the assets.extra directory.
The corresponding value gives the full path of the source file to be
copied. For example, the simple case of copying a single file without
renaming it is specified as
{'my_asset_file.txt': '/path/to/my_asset_file.txt'} .
|
as_text
|
whether to write the SavedModel proto in text format. |
checkpoint_path
|
The checkpoint path to export. If None (the default), the most recent checkpoint found within the model directory is chosen. |
graph_rewrite_specs
|
an iterable of GraphRewriteSpec . Each element will
produce a separate MetaGraphDef within the exported SavedModel, tagged
and rewritten as specified. Defaults to a single entry using the
default serving tag ("serve") and no rewriting.
|
strip_default_attrs
|
Boolean. If True , default-valued attributes will be
removed from the NodeDefs. For a detailed guide, see
Stripping Default-Valued
Attributes.
|
Returns | |
---|---|
The string path to the exported directory. |
Raises | |
---|---|
ValueError
|
if an unrecognized export_type is requested. |
fit
fit(
x=None, y=None, input_fn=None, steps=None, batch_size=None, monitors=None,
max_steps=None
)
See Trainable
. (deprecated arguments)
Raises | |
---|---|
ValueError
|
If x or y are not None while input_fn is not None .
|
ValueError
|
If both steps and max_steps are not None .
|
get_params
get_params(
deep=True
)
Get parameters for this estimator.
Args | |
---|---|
deep
|
boolean, optional
If |
Returns | |
---|---|
params
|
mapping of string to any Parameter names mapped to their values. |
get_variable_names
get_variable_names()
Returns list of all variable names in this model.
Returns | |
---|---|
List of names. |
get_variable_value
get_variable_value(
name
)
Returns value of the variable given by name.
Args | |
---|---|
name
|
string, name of the tensor. |
Returns | |
---|---|
Numpy array - value of the tensor. |
partial_fit
partial_fit(
x=None, y=None, input_fn=None, steps=1, batch_size=None, monitors=None
)
Incremental fit on a batch of samples. (deprecated arguments)
This method is expected to be called several times consecutively on different or the same chunks of the dataset. This either can implement iterative training or out-of-core/online training.
This is especially useful when the whole dataset is too big to fit in memory at the same time. Or when model is taking long time to converge, and you want to split up training into subparts.
Args | |
---|---|
x
|
Matrix of shape [n_samples, n_features...]. Can be iterator that
returns arrays of features. The training input samples for fitting the
model. If set, input_fn must be None .
|
y
|
Vector or matrix [n_samples] or [n_samples, n_outputs]. Can be
iterator that returns array of labels. The training label values
(class labels in classification, real numbers in regression). If set,
input_fn must be None .
|
input_fn
|
Input function. If set, x , y , and batch_size must be
None .
|
steps
|
Number of steps for which to train model. If None , train forever.
|
batch_size
|
minibatch size to use on the input, defaults to first
dimension of x . Must be None if input_fn is provided.
|
monitors
|
List of BaseMonitor subclass instances. Used for callbacks
inside the training loop.
|
Returns | |
---|---|
self , for chaining.
|
Raises | |
---|---|
ValueError
|
If at least one of x and y is provided, and input_fn is
provided.
|
predict
predict(
x=None, input_fn=None, batch_size=None, outputs=None, as_iterable=True
)
Returns predictions for given features. (deprecated argument values) (deprecated argument values)
By default, returns predicted classes. But this default will be dropped
soon. Users should either pass outputs
, or call predict_classes
method.