Help protect the Great Barrier Reef with TensorFlow on Kaggle

# tf.distributions.StudentT

Student's t-distribution.

Inherits From: `Distribution`

This distribution has parameters: degree of freedom `df`, location `loc`, and `scale`.

#### Mathematical details

The probability density function (pdf) is,

``````pdf(x; df, mu, sigma) = (1 + y**2 / df)**(-0.5 (df + 1)) / Z
where,
y = (x - mu) / sigma
Z = abs(sigma) sqrt(df pi) Gamma(0.5 df) / Gamma(0.5 (df + 1))
``````

where:

• `loc = mu`,
• `scale = sigma`, and,
• `Z` is the normalization constant, and,
• `Gamma` is the gamma function.

The StudentT distribution is a member of the location-scale family, i.e., it can be constructed as,

``````X ~ StudentT(df, loc=0, scale=1)
Y = loc + scale * X
``````

Notice that `scale` has semantics more similar to standard deviation than variance. However it is not actually the std. deviation; the Student's t-distribution std. dev. is `scale sqrt(df / (df - 2))` when `df > 2`.

Samples of this distribution are reparameterized (pathwise differentiable). The derivatives are computed using the approach described in the paper

Michael Figurnov, Shakir Mohamed, Andriy Mnih. Implicit Reparameterization Gradients, 2018

#### Examples

Examples of initialization of one or a batch of distributions.

``````import tensorflow_probability as tfp
tfd = tfp.distributions

# Define a single scalar Student t distribution.
single_dist = tfd.StudentT(df=3)

# Evaluate the pdf at 1, returning a scalar Tensor.
single_dist.prob(1.)

# Define a batch of two scalar valued Student t's.
# The first has degrees of freedom 2, mean 1, and scale 11.
# The second 3, 2 and 22.
multi_dist = tfd.StudentT(df=[2, 3], loc=[1, 2.], scale=[11, 22.])

# Evaluate the pdf of the first distribution on 0, and the second on 1.5,
# returning a length two tensor.
multi_dist.prob([0, 1.5])

# Get 3 samples, returning a 3 x 2 tensor.
multi_dist.sample(3)
``````

``````# Define a batch of two Student's t distributions.
# Both have df 2 and mean 1, but different scales.
dist = tfd.StudentT(df=2, loc=1, scale=[11, 22.])

# Evaluate the pdf of both distributions on the same point, 3.0,
# returning a length 2 tensor.
dist.prob(3.0)
``````

Compute the gradients of samples w.r.t. the parameters:

``````df = tf.constant(2.0)
loc = tf.constant(2.0)
scale = tf.constant(11.0)
dist = tfd.StudentT(df=df, loc=loc, scale=scale)
samples = dist.sample(5)  # Shape [5]
loss = tf.reduce_mean(tf.square(samples))  # Arbitrary loss function
# Unbiased stochastic gradients of the loss function
``````

`df` Floating-point `Tensor`. The degrees of freedom of the distribution(s). `df` must contain only positive values.
`loc` Floating-point `Tensor`. The mean(s) of the distribution(s).
`scale` Floating-point `Tensor`. The scaling factor(s) for the distribution(s). Note that `scale` is not technically the standard deviation of this distribution but has semantics more similar to standard deviation than variance.
`validate_args` Python `bool`, default `False`. When `True` distribution parameters are checked for validity despite possibly degrading runtime performance. When `False` invalid inputs may silently render incorrect outputs.
`allow_nan_stats` Python `bool`, default `True`. When `True`, statistics (e.g., mean, mode, variance) use the value "`NaN`" to indicate the result is undefined. When `False`, an exception is raised if one or more of the statistic's batch members are undefined.
`name` Python `str` name prefixed to Ops created by this class.

`TypeError` if loc and scale are different dtypes.

`allow_nan_stats` Python `bool` describing behavior when a stat is undefined.

Stats return +/- infinity when it makes sense. E.g., the variance of a Cauchy distribution is infinity. However, sometimes the statistic is undefined, e.g., if a distribution's pdf does not achieve a maximum within the support of the distribution, the mode is undefined. If the mean is undefined, then by definition the variance is undefined. E.g. the mean for Student's T for df = 1 is undefined (no clear way to say it is either + or - infinity), so the variance = E[(X - mean)**2] is also undefined.

`batch_shape` Shape of a single sample from a single event index as a `TensorShape`.

May be partially defined or unknown.

The batch dimensions are indexes into independent, non-identical parameterizations of this distribution.

`df` Degrees of freedom in these Student's t distribution(s).
`dtype` The `DType` of `Tensor`s handled by this `Distribution`.
`event_shape` Shape of a single sample from a single batch as a `TensorShape`.

May be partially defined or unknown.

`loc` Locations of these Student's t distribution(s).
`name` Name prepended to all ops created by this `Distribution`.
`parameters` Dictionary of parameters used to instantiate this `Distribution`.
`reparameterization_type` Describes how samples from the distribution are reparameterized.

Currently this is one of the static instances `distributions.FULLY_REPARAMETERIZED` or `distributions.NOT_REPARAMETERIZED`.

`scale` Scaling factors of these Student's t distribution(s).
`validate_args` Python `bool` indicating possibly expensive checks are enabled.

## Methods

### `batch_shape_tensor`

View source

Shape of a single sample from a single event index as a 1-D `Tensor`.

The batch dimensions are indexes into independent, non-identical parameterizations of this distribution.

Args
`name` name to give to the op

Returns
`batch_shape` `Tensor`.

### `cdf`

View source

Cumulative distribution function.

Given random variable `X`, the cumulative distribution function `cdf` is:

``````cdf(x) := P[X <= x]
``````

Args
`value` `float` or `double` `Tensor`.
`name` Python `str` prepended to names of ops created by this function.

Returns
`cdf` a `Tensor` of shape `sample_shape(x) + self.batch_shape` with values of type `self.dtype`.

### `copy`

View source

Creates a deep copy of the distribution.

Args
`**override_parameters_kwargs` String/value dictionary of initialization arguments to override with new values.

Returns
`distribution` A new instance of `type(self)` initialized from the union of self.parameters and override_parameters_kwargs, i.e., `dict(self.parameters, **override_parameters_kwargs)`.

### `covariance`

View source

Covariance.

Covariance is (possibly) defined only for non-scalar-event distributions.

For example, for a length-`k`, vector-valued distribution, it is calculated as,

``````Cov[i, j] = Covariance(X_i, X_j) = E[(X_i - E[X_i]) (X_j - E[X_j])]
``````

where `Cov` is a (batch of) `k x k` matrix, `0 <= (i, j) < k`, and `E` denotes expectation.

Alternatively, for non-vector, multivariate distributions (e.g., matrix-valued, Wishart), `Covariance` shall return a (batch of) matrices under some vectorization of the events, i.e.,

``````Cov[i, j] = Covariance(Vec(X)_i, Vec(X)_j) = [as above]
``````

where `Cov` is a (batch of) `k' x k'` matrices, `0 <= (i, j) < k' = reduce_prod(event_shape)`, and `Vec` is some function mapping indices of this distribution's event dimensions to indices of a length-`k'` vector.

Args
`name` Python `str` prepended to names of ops created by this function.

Returns
`covariance` Floating-point `Tensor` with shape `[B1, ..., Bn, k', k']` where the first `n` dimensions are batch coordinates and `k' = reduce_prod(self.event_shape)`.

### `cross_entropy`

View source

Computes the (Shannon) cross entropy.

Denote this distribution (`self`) by `P` and the `other` distribution by `Q`. Assuming `P, Q` are absolutely continuous with respect to one another and permit densities `p(x) dr(x)` and `q(x) dr(x)`, (Shanon) cross entropy is defined as:

``````H[P, Q] = E_p[-log q(X)] = -int_F p(x) log q(x) dr(x)
``````

where `F` denotes the support of the random variable `X ~ P`.

Args
`other` `tfp.distributions.Distribution` instance.
`name` Python `str` prepended to names of ops created by this function.

Returns
`cross_entropy` `self.dtype` `Tensor` with shape `[B1, ..., Bn]` representing `n` different calculations of (Shanon) cross entropy.

### `entropy`

View source

Shannon entropy in nats.

### `event_shape_tensor`

View source

Shape of a single sample from a single batch as a 1-D int32 `Tensor`.

Args
`name` name to give to the op

Returns
`event_shape` `Tensor`.

View source