RSVP para seu evento TensorFlow Everywhere hoje mesmo!

tf.initializers.orthogonal

View source on GitHub

Initializer that generates an orthogonal matrix.

Inherits From: Initializer

If the shape of the tensor to initialize is two-dimensional, it is initialized with an orthogonal matrix obtained from the QR decomposition of a matrix of random numbers drawn from a normal distribution. If the matrix has fewer rows than columns then the output will have orthogonal rows. Otherwise, the output will have orthogonal columns.

If the shape of the tensor to initialize is more than two-dimensional, a matrix of shape (shape[0] * ... * shape[n - 2], shape[n - 1]) is initialized, where n is the length of the shape vector. The matrix is subsequently reshaped to give a tensor of the desired shape.

gain multiplicative factor to apply to the orthogonal matrix
seed A Python integer. Used to create random seeds. See tf.compat.v1.set_random_seed for behavior.
dtype Default data type, used if no dtype argument is provided when calling the initializer. Only floating point types are supported.

References:

Saxe et al., 2014 (pdf)

Methods

from_config

View source

Instantiates an initializer from a configuration dictionary.

Example:

initializer = RandomUniform(-1, 1)
config = initializer.get_config()
initializer = RandomUniform.from_config(config)

Args
config A Python dictionary. It will typically be the output of get_config.

Returns
An Initializer instance.

get_config

View source

Returns the configuration of the initializer as a JSON-serializable dict.

Returns
A JSON-serializable Python dict.

__call__

View source

Returns a tensor object initialized as specified by the initializer.

Args
shape Shape of the tensor.
dtype Optional dtype of the tensor. If not provided use the initializer dtype.
partition_info Optional information about the possible partitioning of a tensor.