Help protect the Great Barrier Reef with TensorFlow on Kaggle Join Challenge


View source on GitHub

Computes CTC (Connectionist Temporal Classification) loss.

This op implements the CTC loss as presented in the article:

A. Graves, S. Fernandez, F. Gomez, J. Schmidhuber. Connectionist Temporal Classification: Labeling Unsegmented Sequence Data with Recurrent Neural Networks. ICML 2006, Pittsburgh, USA, pp. 369-376.


  • Same as the "Classic CTC" in TensorFlow 1.x's tf.compat.v1.nn.ctc_loss setting of preprocess_collapse_repeated=False, ctc_merge_repeated=True
  • Labels may be supplied as either a dense, zero-padded tensor with a vector of label sequence lengths OR as a SparseTensor.
  • On TPU and GPU: Only dense padded labels are supported.
  • On CPU: Caller may use SparseTensor or dense padded labels but calling with a SparseTensor will be significantly faster.
  • Default blank label is 0 rather num_classes - 1, unless overridden by blank_index.

labels tensor of shape [batch_size, max_label_seq_length] or SparseTensor
logits tensor of shape [frames, batch_size, num_labels], if logits_time_major == False, shape is [batch_size, frames, num_labels].
label_length tensor of shape [batch_size], None if labels is SparseTensor Length of reference label sequence in labels.
logit_length tensor of shape [batch_size] Length of input sequence in logits.
logits_time_major (optional) If True (default), logits is shaped [time, batch, logits]. If False, shape is [batch, time, logits]
unique (optional) Unique label indices as computed by ctc_unique_labels(labels). If supplied, enable a faster, memory efficient implementation on TPU.
blank_index (optional) Set the class index to use for the blank label. Negative values will start from num_classes, ie, -1 will reproduce the ctc_loss behavior of using num_classes - 1 for the blank symbol. There is some memory/performance overhead to switching from the default of 0 as an additional shifted copy of the logits may be created.
name A name for this Op. Defaults to "ctc_loss_dense".

loss tensor of shape [batch_size], negative log probabilities.