# tfp.bijectors.CholeskyOuterProduct

Compute g(X) = X @ X.T; X is lower-triangular, positive-diagonal matrix.

Inherits From: AutoCompositeTensorBijector

The surjectivity of g as a map from the set of n x n positive-diagonal lower-triangular matrices to the set of SPD matrices follows immediately from executing the Cholesky factorization algorithm on an SPD matrix A to produce a positive-diagonal lower-triangular matrix L such that A = L @ L.T.

To prove the injectivity of g, suppose that L_1 and L_2 are lower-triangular with positive diagonals and satisfy A = L_1 @ L_1.T = L_2 @ L_2.T. Then inv(L_1) @ A @ inv(L_1).T = [inv(L_1) @ L_2] @ [inv(L_1) @ L_2].T = I. Setting L_3 := inv(L_1) @ L_2, that L_3 is a positive-diagonal lower-triangular matrix follows from inv(L_1) being positive-diagonal lower-triangular (which follows from the diagonal of a triangular matrix being its spectrum), and that the product of two positive-diagonal lower-triangular matrices is another positive-diagonal lower-triangular matrix.

A simple inductive argument (proceeding one column of L_3 at a time) shows that, if I = L_3 @ L_3.T, with L_3 being lower-triangular with positive- diagonal, then L_3 = I. Thus, L_1 = L_2, proving injectivity of g.

#### Examples

bijector.CholeskyOuterProduct().forward(x=[[1., 0], [2, 1]])
# Result: [[1., 2], [2, 5]], i.e., x @ x.T

bijector.CholeskyOuterProduct().inverse(y=[[1., 2], [2, 5]])
# Result: [[1., 0], [2, 1]], i.e., cholesky(y).

validate_args Python bool indicating whether arguments should be checked for correctness.
name Python str name given to ops managed by this object.

dtype

forward_min_event_ndims Returns the minimal number of dimensions bijector.forward operates on.

Multipart bijectors return structured ndims, which indicates the expected structure of their inputs. Some multipart bijectors, notably Composites, may return structures of None.

graph_parents Returns this Bijector's graph_parents as a Python list.
has_static_min_event_ndims Returns True if the bijector has statically-known min_event_ndims. (deprecated)

inverse_min_event_ndims Returns the minimal number of dimensions bijector.inverse operates on.

Multipart bijectors return structured event_ndims, which indicates the expected structure of their outputs. Some multipart bijectors, notably Composites, may return structures of None.

is_constant_jacobian Returns true iff the Jacobian matrix is not a function of x.

name Returns the string name of this Bijector.
name_scope Returns a tf.name_scope instance for this class.
non_trainable_variables Sequence of non-trainable variables owned by this module and its submodules.
parameters Dictionary of parameters used to instantiate this Bijector.
submodules Sequence of all sub-modules.

Submodules are modules which are properties of this module, or found as properties of modules which are properties of this module (and so on).

a = tf.Module()
b = tf.Module()
c = tf.Module()
a.b = b
b.c = c
list(a.submodules) == [b, c]
True
list(b.submodules) == [c]
True
list(c.submodules) == []
True

trainable_variables Sequence of trainable variables owned by this module and its submodules.

validate_args Returns True if Tensor arguments will be validated.
variables Sequence of variables owned by this module and its submodules.

## Methods

### forward

View source

Returns the forward Bijector evaluation, i.e., X = g(Y).

Args
x Tensor (structure). The input to the 'forward' evaluation.
name The name to give this op.
**kwargs Named arguments forwarded to subclass implementation.

Returns
Tensor (structure).

Raises
TypeError if self.dtype is specified and x.dtype is not self.dtype.
NotImplementedError if _forward is not implemented.

### forward_dtype

View source

Returns the dtype returned by forward for the provided input.

### forward_event_ndims

View source

Returns the number of event dimensions produced by forward.

### forward_event_shape

View source

Shape of a single sample from a single batch as a TensorShape.

Same meaning as forward_event_shape_tensor. May be only partially defined.

Args
input_shape TensorShape (structure) indicating event-portion shape passed into forward function.

Returns
forward_event_shape_tensor TensorShape (structure) indicating event-portion shape after applying forward. Possibly unknown.

### forward_event_shape_tensor

View source

Shape of a single sample from a single batch as an int32 1D Tensor.

Args
input_shape Tensor, int32 vector (structure) indicating event-portion shape passed into forward function.
name name to give to the op

Returns
forward_event_shape_tensor Tensor, int32 vector (structure) indicating event-portion shape after applying forward.

### forward_log_det_jacobian

View source

Returns both the forward_log_det_jacobian.

Args
x Tensor (structure). The input to the 'forward' Jacobian determinant evaluation.
event_ndims Optional number of dimensions in the probabilistic events being transformed; this must be greater than or equal to self.forward_min_event_ndims. If event_ndims is specified, the log Jacobian determinant is summed to produce a scalar log-determinant for each event. Otherwise (if event_ndims is None), no reduction is performed. Multipart bijectors require structured event_ndims, such that the batch rank rank(y[i]) - event_ndims[i] is the same for all elements i of the structured input. In most cases (with the exception of tfb.JointMap) they further require that event_ndims[i] - self.inverse_min_event_ndims[i] is the same for all elements i of the structured input. Default value: None (equivalent to self.forward_min_event_ndims).
name The name to give this op.
**kwargs Named arguments forwarded to subclass implementation.

Returns
Tensor (structure), if this bijector is injective. If not injective this is not implemented.

Raises
TypeError if y's dtype is incompatible with the expected output dtype.
NotImplementedError if neither _forward_log_det_jacobian nor {_inverse, _inverse_log_det_jacobian} are implemented, or this is a non-injective bijector.
ValueError if the value of event_ndims is not valid for this bijector.

### inverse

View source

Returns the inverse Bijector evaluation, i.e., X = g^{-1}(Y).

Args
y Tensor (structure). The input to the 'inverse' evaluation.
name The name to give this op.
**kwargs Named arguments forwarded to subclass implementation.

Returns
Tensor (structure), if this bijector is injective. If not injective, returns the k-tuple containing the unique k points (x1, ..., xk) such that g(xi) = y.

Raises
TypeError if y's structured dtype is incompatible with the expected output dtype.
NotImplementedError if _inverse is not implemented.

### inverse_dtype

View source

Returns the dtype returned by inverse for the provided input.

### inverse_event_ndims

View source

Returns the number of event dimensions produced by inverse.

### inverse_event_shape

View source

Shape of a single sample from a single batch as a TensorShape.

Same meaning as inverse_event_shape_tensor. May be only partially defined.

Args
output_shape TensorShape (structure) indicating event-portion shape passed into inverse function.

Returns
inverse_event_shape_tensor TensorShape (structure) indicating event-portion shape after applying inverse. Possibly unknown.

### inverse_event_shape_tensor

View source

Shape of a single sample from a single batch as an int32 1D Tensor.

Args
output_shape Tensor, int32 vector (structure) indicating event-portion shape passed into inverse function.
name name to give to the op

Returns
inverse_event_shape_tensor Tensor, int32 vector (structure) indicating event-portion shape after applying inverse.

### inverse_log_det_jacobian

View source

Returns the (log o det o Jacobian o inverse)(y).

Mathematically, returns: log(det(dX/dY))(Y). (Recall that: X=g^{-1}(Y).)

Note that forward_log_det_jacobian is the negative of this function, evaluated at g^{-1}(y).

Args
y Tensor (structure). The input to the 'inverse' Jacobian determinant evaluation.
event_ndims Optional number of dimensions in the probabilistic events being transformed; this must be greater than or equal to self.inverse_min_event_ndims. If event_ndims is specified, the log Jacobian determinant is summed to produce a scalar log-determinant for each event. Otherwise (if event_ndims is None), no reduction is performed. Multipart bijectors require structured event_ndims, such that the batch rank rank(y[i]) - event_ndims[i] is the same for all elements i of the structured input. In most cases (with the exception of tfb.JointMap) they further require that event_ndims[i] - self.inverse_min_event_ndims[i] is the same for all elements i of the structured input. Default value: None (equivalent to self.inverse_min_event_ndims).
name The name to give this op.
**kwargs Named arguments forwarded to subclass implementation.

Returns
ildj Tensor, if this bijector is injective. If not injective, returns the tuple of local log det Jacobians, log(det(Dg_i^{-1}(y))), where g_i is the restriction of g to the ith partition Di.

Raises
TypeError if x's dtype is incompatible with the expected inverse-dtype.
NotImplementedError if _inverse_log_det_jacobian is not implemented.
ValueError if the value of event_ndims is not valid for this bijector.

### parameter_properties

View source

Returns a dict mapping constructor arg names to property annotations.

This dict should include an entry for each of the bijector's Tensor-valued constructor arguments.

Args
dtype Optional float dtype to assume for continuous-valued parameters. Some constraining bijectors require advance knowledge of the dtype because certain constants (e.g., tfb.Softplus.low) must be instantiated with the same dtype as the values to be transformed.

Returns
parameter_properties A str ->tfp.python.internal.parameter_properties.ParameterPropertiesdict mapping constructor argument names toParameterProperties` instances.

### with_name_scope

Decorator to automatically enter the module name scope.

class MyModule(tf.Module):
@tf.Module.with_name_scope
def __call__(self, x):
if not hasattr(self, 'w'):
self.w = tf.Variable(tf.random.normal([x.shape[1], 3]))
return tf.matmul(x, self.w)

Using the above module would produce tf.Variables and tf.Tensors whose names included the module name:

mod = MyModule()
mod(tf.ones([1, 2]))
<tf.Tensor: shape=(1, 3), dtype=float32, numpy=..., dtype=float32)>
mod.w
<tf.Variable 'my_module/Variable:0' shape=(2, 3) dtype=float32,
numpy=..., dtype=float32)>

Args
method The method to wrap.

Returns
The original method wrapped such that it enters the module's name scope.

### __call__

View source

Applies or composes the Bijector, depending on input type.

This is a convenience function which applies the Bijector instance in three different ways, depending on the input:

1. If the input is a tfd.Distribution instance, return tfd.TransformedDistribution(distribution=input, bijector=self).
2. If the input is a tfb.Bijector instance, return tfb.Chain([self, input]).
3. Otherwise, return self.forward(input)

Args
value A tfd.Distribution, tfb.Bijector, or a (structure of) Tensor.
name Python str name given to ops created by this function.
**kwargs Additional keyword arguments passed into the created tfd.TransformedDistribution, tfb.Bijector, or self.forward.

Returns
composition A tfd.TransformedDistribution if the input was a tfd.Distribution, a tfb.Chain if the input was a tfb.Bijector, or a (structure of) Tensor computed by self.forward.

#### Examples

sigmoid = tfb.Reciprocal()(
tfb.Shift(shift=1.)(
tfb.Exp()(
tfb.Scale(scale=-1.))))
# ==> `tfb.Chain([
#         tfb.Reciprocal(),
#         tfb.Shift(shift=1.),
#         tfb.Exp(),
#         tfb.Scale(scale=-1.),
#      ])`  # ie, `tfb.Sigmoid()`

log_normal = tfb.Exp()(tfd.Normal(0, 1))
# ==> `tfd.TransformedDistribution(tfd.Normal(0, 1), tfb.Exp())`

tfb.Exp()([-1., 0., 1.])
# ==> tf.exp([-1., 0., 1.])

### __eq__

View source

Return self==value.

[{ "type": "thumb-down", "id": "missingTheInformationINeed", "label":"必要な情報がない" },{ "type": "thumb-down", "id": "tooComplicatedTooManySteps", "label":"複雑すぎる / 手順が多すぎる" },{ "type": "thumb-down", "id": "outOfDate", "label":"最新ではない" },{ "type": "thumb-down", "id": "samplesCodeIssue", "label":"Samples / code issue" },{ "type": "thumb-down", "id": "otherDown", "label":"その他" }]
[{ "type": "thumb-up", "id": "easyToUnderstand", "label":"わかりやすい" },{ "type": "thumb-up", "id": "solvedMyProblem", "label":"問題の解決に役立った" },{ "type": "thumb-up", "id": "otherUp", "label":"その他" }]