View source on GitHub |
TensorFlow Probability GLM python package.
Classes
class Bernoulli
: Bernoulli(probs=mean)
where mean = sigmoid(X @ weights)
.
class BernoulliNormalCDF
: Bernoulli(probs=mean)
where mean = Normal(0, 1).cdf(X @ weights)
.
class Binomial
: Binomial(total_count, probs=mean)
.
class CustomExponentialFamily
: Constucts GLM from arbitrary distribution and inverse link function.
class ExponentialFamily
: Specifies a mean-value parameterized exponential family.
class GammaExp
: Gamma(concentration=1, rate=1 / mean)
where mean = exp(X @ w))
.
class GammaSoftplus
: Gamma(concentration=1, rate=1 / mean)
where mean = softplus(X @ w))
.
class LogNormal
: LogNormal(loc=log(mean) - log(2) / 2, scale=sqrt(log(2)))
where mean = exp(X @ weights)
.
class LogNormalSoftplus
: LogNormal(loc=log(mean) - log(2) / 2, scale=sqrt(log(2)))
mean = softplus(X @ weights)
.
class NegativeBinomial
: NegativeBinomial(total_count, probs=mean / (mean + total_count))
.
class NegativeBinomialSoftplus
: NegativeBinomial(total_count, probs=mean / (mean + total_count))
.
class Normal
: Normal(loc=mean, scale=1)
where mean = X @ weights
.
class NormalReciprocal
: Normal(loc=mean, scale=1)
where mean = 1 / (X @ weights)
.
class Poisson
: Poisson(rate=mean)
where mean = exp(X @ weights)
.
class PoissonSoftplus
: Poisson(rate=mean)
where mean = softplus(X @ weights)
.
Functions
compute_predicted_linear_response(...)
: Computes model_matrix @ model_coefficients + offset
.
convergence_criteria_small_relative_norm_weights_change(...)
: Returns Python callable
which indicates fitting procedure has converged.
fit(...)
: Runs multiple Fisher scoring steps.
fit_one_step(...)
: Runs one step of Fisher scoring.