tfp.experimental.nn.ConvolutionV2

Convolution layer.

This layer creates a Convolution kernel that is convolved (actually cross-correlated) with the layer input to produce a tensor of outputs.

This V2 version supports alternative batch semantics. V1 layers, with batch size B produced outputs of shape [N, H, W, B, C] (where N, H, W, C are minibatch size, height, width and number of channels, as usual). V2 layers reorder these to [N, B, H, W, C].

This layer has two learnable parameters, kernel and bias.

  • The kernel (aka filters argument of tf.nn.convolution) is a tf.Variable with rank + 2 ndims and shape given by concat([filter_shape, [input_size, output_size]], axis=0). Argument filter_shape is either a length-rank vector or expanded as one, i.e., filter_size * tf.ones(rank) when filter_shape is an int (which we denote as filter_size).
  • The bias is a tf.Variable with 1 ndims and shape [output_size].

In summary, the shape of learnable parameters is governed by the following arguments: filter_shape, input_size, output_size and possibly rank (if filter_shape needs expansion).

For more information on convolution layers, we recommend the following:

Examples

import tensorflow as tf
import tensorflow_probability as tfp
tfb = tfp.bijectors
tfd = tfp.distributions
tfn = tfp.experimental.nn

Convolution1DV2 = functools.partial(tfn.ConvolutionV2, rank=1)
Convolution2DV2 = tfn.ConvolutionV2
Convolution3DV2 = functools.partial(tfn.ConvolutionV2, rank=3)

input_size ... In Keras, this argument is inferred from the rightmost input shape, i.e., tf.shape(inputs)[-1]. This argument specifies the size of the second from the rightmost dimension of both inputs and kernel. Default value: None.
output_size ... In Keras, this argument is called filters. This argument specifies the rightmost dimension size of both kernel and bias.
filter_shape ... In Keras, this argument is called kernel_size. This argument specifies the leftmost rank dimensions' sizes of kernel.
rank An integer, the rank of the convolution, e.g. "2" for 2D convolution. This argument implies the number of kernel dimensions, i.e., kernel.shape.rank == rank + 2. In Keras, this argument has the same name and semantics. Default value: 2.
strides An integer or tuple/list of n integers, specifying the stride length of the convolution. In Keras, this argument has the same name and semantics. Default value: 1.
padding One of "VALID" or "SAME" (case-insensitive). In Keras, this argument has the same name and semantics (except we don't support "CAUSAL"). Default value: 'VALID'.
dilations An integer or tuple/list of rank integers, specifying the dilation rate to use for dilated convolution. Currently, specifying any dilations value != 1 is incompatible with specifying any strides value != 1. In Keras, this argument is called dilation_rate. Default value: 1.
init_kernel_fn ... Default value: None (i.e., tfp.experimental.nn.initializers.glorot_uniform()).
init_bias_fn ... Default value: None (i.e., tf.initializers.zeros()).
make_kernel_bias_fn ... Default value: tfp.experimental.nn.util.make_kernel_bias.
dtype ... Default value: tf.float32.
batch_shape ... Default value: ().
activation_fn ... Default value: None.
name ... Default value: None (i.e., 'ConvolutionV2').

activation_fn

also_track

bias

dtype

extra_loss

extra_result

kernel

name Returns the name of this module as passed or determined in the ctor.

name_scope Returns a tf.name_scope instance for this class.
submodules Sequence of all sub-modules.

Submodules are modules which are properties of this module, or found as properties of modules which are properties of this module (and so on).

a = tf.Module()
b = tf.Module()
c = tf.Module()
a.b = b
b.c = c
list(a.submodules) == [b, c]
True
list(b.submodules) == [c]
True
list(c.submodules) == []
True

trainable_variables Sequence of trainable variables owned by this module and its submodules.

variables Sequence of variables owned by this module and its submodules.

Methods

eval

View source

load

View source

save

View source

summary

View source

with_name_scope

Decorator to automatically enter the module name scope.

class MyModule(tf.Module):
  @tf.Module.with_name_scope
  def __call__(self, x):
    if not hasattr(self, 'w'):
      self.w = tf.Variable(tf.random.normal([x.shape[1], 3]))
    return tf.matmul(x, self.w)

Using the above module would produce tf.Variables and tf.Tensors whose names included the module name:

mod = MyModule()
mod(tf.ones([1, 2]))
<tf.Tensor: shape=(1, 3), dtype=float32, numpy=..., dtype=float32)>
mod.w
<tf.Variable 'my_module/Variable:0' shape=(2, 3) dtype=float32,
numpy=..., dtype=float32)>

Args
method The method to wrap.

Returns
The original method wrapped such that it enters the module's name scope.

__call__

View source

Call self as a function.