Missed TensorFlow Dev Summit? Check out the video playlist. Watch recordings

tfp.distributions.BetaBinomial

View source on GitHub

Beta-Binomial compound distribution.

Inherits From: Distribution

tfp.distributions.BetaBinomial(
    total_count, concentration1, concentration0, validate_args=False,
    allow_nan_stats=True, name='BetaBinomial'
)

The Beta-Binomial distribution is parameterized by (a batch of) total_count parameters, the number of trials per draw from Binomial distributions where the probabilities of success per trial are drawn from underlying Beta distributions; the Beta distributions are parameterized by concentration1 (aka 'alpha') and concentration0 (aka 'beta').

Mathematically, it is (equivalent to) a special case of the Dirichlet-Multinomial over two classes, although the computational representation is slightly different: while the Beta-Binomial is a distribution over the number of successes in total_count trials, the two-class Dirichlet-Multinomial is a distribution over the number of successes and failures.

Mathematical Details

The Beta-Binomial is a distribution over the number of successes in total_count independent Binomial trials, with each trial having the same probability of success, the underlying probability being unknown but drawn from a Beta distribution with known parameters.

The probability mass function (pmf) is,

pmf(k; n, a, b) = Beta(k + a, n - k + b) / Z
Z = (k! (n - k)! / n!) * Beta(a, b)

where:

  • concentration1 = a > 0,
  • concentration0 = b > 0,
  • total_count = n, n a positive integer,
  • n! is n factorial,
  • Beta(x, y) = Gamma(x) Gamma(y) / Gamma(x + y) is the beta function, and
  • Gamma is the gamma function.

Dirichlet-Multinomial is a compound distribution, i.e., its samples are generated as follows.

  1. Choose success probabilities: probs ~ Beta(concentration1, concentration0)
  2. Draw integers representing the number of successes: counts ~ Binomial(total_count, probs)

Distribution parameters are automatically broadcast in all functions; see examples for details.

Examples

Create a single distribution, corresponding to 5 coin flips.

dist = BetaBinomial(total_count=5., concentration1=.5, concentration0=.5)

Creates 3 distributions with differing numbers of coin flips. The concentration parameters are broadcast.

dist = BetaBinomial(
   total_count=[5., 10., 20.], concentration1=.5, concentration0=.5)

Creates 3 distribution, with differing numbers of coin flips and differing concentration parameters.

dist = BetaBinomial(
   total_count=[5., 10., 20.],
   concentration1=[.5, 2., 3.],
   concentration0=[4., 3., 2.])

The distribution log_prob functions can be evaluated on counts.

# counts same shape as p.
counts = [1., 2, 3]
dist.log_prob(counts)  # Shape [3]

# p will be broadcast to [[.2, .3, .8], [.2, .3, .8]] to match counts.
counts = [[1., 2, 1], [2, 2, 4]]
dist.log_prob(counts)  # Shape [2, 3]

# p will be broadcast to shape [5, 7, 3] to match counts.
counts = [[...]]  # Shape [5, 7, 3]
dist.log_prob(counts)  # Shape [5, 7, 3]

Args:

  • total_count: Non-negative integer-valued tensor, whose dtype is the same as concentration1 and concentration0. The shape is broadcastable to [N1,..., Nm] with m >= 0. When total_count is broadcast with concentration1 and concentration0, it defines the distribution as a batch of N1 x ... x Nm different Beta-Binomial distributions. Its components should be equal to integer values.
  • concentration1: Positive floating-point Tensor indicating mean number of successes. Specifically, the expected number of successes is total_count * concentration1 / (concentration1 + concentration0).
  • concentration0: Positive floating-point Tensor indicating mean number of failures; see description of concentration1 for details.
  • validate_args: Python bool, default False. When True distribution parameters are checked for validity despite possibly degrading runtime performance. When False invalid inputs may silently render incorrect outputs.
  • allow_nan_stats: Python bool, default True. When True, statistics (e.g., mean, mode, variance) use the value 'NaN' to indicate the result is undefined. When False, an exception is raised if one or more of the statistic's batch members are undefined.
  • name: Python str name prefixed to Ops created by this class.

Attributes:

  • allow_nan_stats: Python bool describing behavior when a stat is undefined.

    Stats return +/- infinity when it makes sense. E.g., the variance of a Cauchy distribution is infinity. However, sometimes the statistic is undefined, e.g., if a distribution's pdf does not achieve a maximum within the support of the distribution, the mode is undefined. If the mean is undefined, then by definition the variance is undefined. E.g. the mean for Student's T for df = 1 is undefined (no clear way to say it is either + or - infinity), so the variance = E[(X - mean)**2] is also undefined.

  • batch_shape: Shape of a single sample from a single event index as a TensorShape.

    May be partially defined or unknown.

    The batch dimensions are indexes into independent, non-identical parameterizations of this distribution.

  • concentration0: Concentration parameter associated with a failure outcome.

  • concentration1: Concentration parameter associated with a success outcome.

  • dtype: The DType of Tensors handled by this Distribution.

  • event_shape: Shape of a single sample from a single batch as a TensorShape.

    May be partially defined or unknown.

  • name: Name prepended to all ops created by this Distribution.

  • name_scope: Returns a tf.name_scope instance for this class.

  • parameters: Dictionary of parameters used to instantiate this Distribution.

  • reparameterization_type: Describes how samples from the distribution are reparameterized.

    Currently this is one of the static instances tfd.FULLY_REPARAMETERIZED or tfd.NOT_REPARAMETERIZED.

  • submodules: Sequence of all sub-modules.

    Submodules are modules which are properties of this module, or found as properties of modules which are properties of this module (and so on).

  a = tf.Module() 
  b = tf.Module() 
  c = tf.Module() 
  a.b = b 
  b.c = c 
  list(a.submodules) == [b, c] 
    True 
  list(b.submodules) == [c] 
    True 
  list(c.submodules) == [] 
    True 
     
  • total_count: Number of trials.
  • trainable_variables: Sequence of trainable variables owned by this module and its submodules.

  • validate_args: Python bool indicating possibly expensive checks are enabled.

  • variables: Sequence of variables owned by this module and its submodules.

Methods

__getitem__

View source

__getitem__(
    slices
)

Slices the batch axes of this distribution, returning a new instance.

b = tfd.Bernoulli(logits=tf.zeros([3, 5, 7, 9]))
b.batch_shape  # => [3, 5, 7, 9]
b2 = b[:, tf.newaxis, ..., -2:, 1::2]
b2.batch_shape  # => [3, 1, 5, 2, 4]

x = tf.random.normal([5, 3, 2, 2])
cov = tf.matmul(x, x, transpose_b=True)
chol = tf.cholesky(cov)
loc = tf.random.normal([4, 1, 3, 1])
mvn = tfd.MultivariateNormalTriL(loc, chol)
mvn.batch_shape  # => [4, 5, 3]
mvn.event_shape  # => [2]
mvn2 = mvn[:, 3:, ..., ::-1, tf.newaxis]
mvn2.batch_shape  # => [4, 2, 3, 1]
mvn2.event_shape  # => [2]

Args:

  • slices: slices from the [] operator

Returns:

  • dist: A new tfd.Distribution instance with sliced parameters.

__iter__

View source

__iter__()

batch_shape_tensor

View source

batch_shape_tensor(
    name='batch_shape_tensor'
)

Shape of a single sample from a single event index as a 1-D Tensor.

The batch dimensions are indexes into independent, non-identical parameterizations of this distribution.

Args:

  • name: name to give to the op

Returns:

  • batch_shape: Tensor.

cdf

View source

cdf(
    value, name='cdf', **kwargs
)

Cumulative distribution function.

Given random variable X, the cumulative distribution function cdf is:

cdf(x) := P[X <= x]

Args:

  • value: float or double Tensor.
  • name: Python str prepended to names of ops created by this function.
  • **kwargs: Named arguments forwarded to subclass implementation.

Returns:

  • cdf: a Tensor of shape sample_shape(x) + self.batch_shape with values of type self.dtype.

copy

View source

copy(
    **override_parameters_kwargs
)

Creates a deep copy of the distribution.

Args:

  • **override_parameters_kwargs: String/value dictionary of initialization arguments to override with new values.

Returns:

  • distribution: A new instance of type(self) initialized from the union of self.parameters and override_parameters_kwargs, i.e., dict(self.parameters, **override_parameters_kwargs).

covariance

View source

covariance(
    name='covariance', **kwargs
)

Covariance.

Covariance is (possibly) defined only for non-scalar-event distributions.

For example, for a length-k, vector-valued distribution, it is calculated as,

Cov[i, j] = Covariance(X_i, X_j) = E[(X_i - E[X_i]) (X_j - E[X_j])]

where Cov is a (batch of) k x k matrix, 0 <= (i, j) < k, and E denotes expectation.

Alternatively, for non-vector, multivariate distributions (e.g., matrix-valued, Wishart), Covariance shall return a (batch of) matrices under some vectorization of the events, i.e.,

Cov[i, j] = Covariance(Vec(X)_i, Vec(X)_j) = [as above]

where Cov is a (batch of) k' x k' matrices, 0 <= (i, j) < k' = reduce_prod(event_shape), and Vec is some function mapping indices of this distribution's event dimensions to indices of a length-k' vector.

Args:

  • name: Python str prepended to names of ops created by this function.
  • **kwargs: Named arguments forwarded to subclass implementation.

Returns:

  • covariance: Floating-point Tensor with shape [B1, ..., Bn, k', k'] where the first n dimensions are batch coordinates and k' = reduce_prod(self.event_shape).

cross_entropy

View source

cross_entropy(
    other, name='cross_entropy'
)

Computes the (Shannon) cross entropy.

Denote this distribution (self) by P and the other distribution by Q. Assuming P, Q are absolutely continuous with respect to one another and permit densities p(x) dr(x) and q(x) dr(x), (Shannon) cross entropy is defined as:

H[P, Q] = E_p[-log q(X)] = -int_F p(x) log q(x) dr(x)

where F denotes the support of the random variable X ~ P.

Args:

Returns:

  • cross_entropy: self.dtype Tensor with shape [B1, ..., Bn] representing n different calculations of (Shannon) cross entropy.

entropy

View source

entropy(
    name='entropy', **kwargs
)

Shannon entropy in nats.

event_shape_tensor

View source

event_shape_tensor(
    name='event_shape_tensor'
)

Shape of a single sample from a single batch as a 1-D int32 Tensor.

Args:

  • name: name to give to the op

Returns:

  • event_shape: Tensor.

is_scalar_batch

View source

is_scalar_batch(
    name='is_scalar_batch'
)

Indicates that batch_shape == [].

Args:

  • name: Python str prepended to names of ops created by this function.

Returns:

  • is_scalar_batch: bool scalar Tensor.

is_scalar_event

View source

is_scalar_event(
    name='is_scalar_event'
)

Indicates that event_shape == [].

Args:

  • name: Python str prepended to names of ops created by this function.

Returns:

  • is_scalar_event: bool scalar Tensor.

kl_divergence

View source

kl_divergence(
    other, name='kl_divergence'
)

Computes the Kullback--Leibler divergence.

Denote this distribution (self) by p and the other distribution by q. Assuming p, q are absolutely continuous with respect to reference measure r, the KL divergence is defined as:

KL[p, q] = E_p[log(p(X)/q(X))]
         = -int_F p(x) log q(x) dr(x) + int_F p(x) log p(x) dr(x)
         = H[p, q] - H[p]

where F denotes the support of the random variable X ~ p, H[., .] denotes (Shannon) cross entropy, and H[.] denotes (Shannon) entropy.

Args:

Returns:

  • kl_divergence: self.dtype Tensor with shape [B1, ..., Bn] representing n different calculations of the Kullback-Leibler divergence.

log_cdf

View source

log_cdf(
    value, name='log_cdf', **kwargs
)

Log cumulative distribution function.

Given random variable X, the cumulative distribution function cdf is:

log_cdf(x) := Log[ P[X <= x] ]

Often, a numerical approximation can be used for log_cdf(x) that yields a more accurate answer than simply taking the logarithm of the cdf when x << -1.

Args:

  • value: float or double Tensor.
  • name: Python str prepended to names of ops created by this function.
  • **kwargs: Named arguments forwarded to subclass implementation.

Returns:

  • logcdf: a Tensor of shape sample_shape(x) + self.batch_shape with values of type self.dtype.

log_prob

View source

log_prob(
    value, name='log_prob', **kwargs
)

Log probability density/mass function.

Additional documentation from BetaBinomial:

For each batch member of counts value, P[value] is the probability that after sampling self.total_count draws from this Binomial distribution, the number of successes is value. Since different sequences of draws can result in the same counts, the probability includes a combinatorial coefficient.

Args:

  • value: float or double Tensor.
  • name: Python str prepended to names of ops created by this function.
  • **kwargs: Named arguments forwarded to subclass implementation.

Returns:

  • log_prob: a Tensor of shape sample_shape(x) + self.batch_shape with values of type self.dtype.

log_survival_function

View source

log_survival_function(
    value, name='log_survival_function', **kwargs
)

Log survival function.

Given random variable X, the survival function is defined:

log_survival_function(x) = Log[ P[X > x] ]
                         = Log[ 1 - P[X <= x] ]
                         = Log[ 1 - cdf(x) ]

Typically, different numerical approximations can be used for the log survival function, which are more accurate than 1 - cdf(x) when x >> 1.

Args:

  • value: float or double Tensor.
  • name: Python str prepended to names of ops created by this function.
  • **kwargs: Named arguments forwarded to subclass implementation.

Returns:

Tensor of shape sample_shape(x) + self.batch_shape with values of type self.dtype.

mean

View source

mean(
    name='mean', **kwargs
)

Mean.

mode

View source

mode(
    name='mode', **kwargs
)

Mode.

param_shapes

View source

@classmethod
param_shapes(
    cls, sample_shape, name='DistributionParamShapes'
)

Shapes of parameters given the desired shape of a call to sample().

This is a class method that describes what key/value arguments are required to instantiate the given Distribution so that a particular shape is returned for that instance's call to sample().

Subclasses should override class method _param_shapes.

Args:

  • sample_shape: Tensor or python list/tuple. Desired shape of a call to sample().
  • name: name to prepend ops with.

Returns:

dict of parameter name to Tensor shapes.

param_static_shapes

View source

@classmethod
param_static_shapes(
    cls, sample_shape
)

param_shapes with static (i.e. TensorShape) shapes.

This is a class method that describes what key/value arguments are required to instantiate the given Distribution so that a particular shape is returned for that instance's call to sample(). Assumes that the sample's shape is known statically.

Subclasses should override class method _param_shapes to return constant-valued tensors when constant values are fed.

Args:

  • sample_shape: TensorShape or python list/tuple. Desired shape of a call to sample().

Returns:

dict of parameter name to TensorShape.

Raises:

  • ValueError: if sample_shape is a TensorShape and is not fully defined.

prob

View source

prob(
    value, name='prob', **kwargs
)

Probability density/mass function.

Additional documentation from BetaBinomial:

For each batch member of counts value, P[value] is the probability that after sampling self.total_count draws from this Binomial distribution, the number of successes is value. Since different sequences of draws can result in the same counts, the probability includes a combinatorial coefficient.

Args:

  • value: float or double Tensor.
  • name: Python str prepended to names of ops created by this function.
  • **kwargs: Named arguments forwarded to subclass implementation.

Returns:

  • prob: a Tensor of shape sample_shape(x) + self.batch_shape with values of type self.dtype.

quantile

View source

quantile(
    value, name='quantile', **kwargs
)

Quantile function. Aka 'inverse cdf' or 'percent point function'.

Given random variable X and p in [0, 1], the quantile is:

quantile(p) := x such that P[X <= x] == p

Args:

  • value: float or double Tensor.
  • name: Python str prepended to names of ops created by this function.
  • **kwargs: Named arguments forwarded to subclass implementation.

Returns:

  • quantile: a Tensor of shape sample_shape(x) + self.batch_shape with values of type self.dtype.

sample

View source

sample(
    sample_shape=(), seed=None, name='sample', **kwargs
)

Generate samples of the specified shape.

Note that a call to sample() without arguments will generate a single sample.

Args:

  • sample_shape: 0D or 1D int32 Tensor. Shape of the generated samples.
  • seed: Python integer or tfp.util.SeedStream instance, for seeding PRNG.
  • name: name to give to the op.
  • **kwargs: Named arguments forwarded to subclass implementation.

Returns:

  • samples: a Tensor with prepended dimensions sample_shape.

stddev

View source

stddev(
    name='stddev', **kwargs
)

Standard deviation.

Standard deviation is defined as,

stddev = E[(X - E[X])**2]**0.5

where X is the random variable associated with this distribution, E denotes expectation, and stddev.shape = batch_shape + event_shape.

Args:

  • name: Python str prepended to names of ops created by this function.
  • **kwargs: Named arguments forwarded to subclass implementation.

Returns:

  • stddev: Floating-point Tensor with shape identical to batch_shape + event_shape, i.e., the same shape as self.mean().

survival_function

View source

survival_function(
    value, name='survival_function', **kwargs
)

Survival function.

Given random variable X, the survival function is defined:

survival_function(x) = P[X > x]
                     = 1 - P[X <= x]
                     = 1 - cdf(x).

Args:

  • value: float or double Tensor.
  • name: Python str prepended to names of ops created by this function.
  • **kwargs: Named arguments forwarded to subclass implementation.

Returns:

Tensor of shape sample_shape(x) + self.batch_shape with values of type self.dtype.

variance

View source

variance(
    name='variance', **kwargs
)

Variance.

Variance is defined as,

Var = E[(X - E[X])**2]

where X is the random variable associated with this distribution, E denotes expectation, and Var.shape = batch_shape + event_shape.

Args:

  • name: Python str prepended to names of ops created by this function.
  • **kwargs: Named arguments forwarded to subclass implementation.

Returns:

  • variance: Floating-point Tensor with shape identical to batch_shape + event_shape, i.e., the same shape as self.mean().

with_name_scope

@classmethod
with_name_scope(
    cls, method
)

Decorator to automatically enter the module name scope.

class MyModule(tf.Module): 
  @tf.Module.with_name_scope 
  def __call__(self, x): 
    if not hasattr(self, 'w'): 
      self.w = tf.Variable(tf.random.normal([x.shape[1], 3])) 
    return tf.matmul(x, self.w) 

Using the above module would produce tf.Variables and tf.Tensors whose names included the module name:

mod = MyModule() 
mod(tf.ones([1, 2])) 
<tf.Tensor: shape=(1, 3), dtype=float32, numpy=..., dtype=float32)> 
mod.w 
<tf.Variable 'my_module/Variable:0' shape=(2, 3) dtype=float32, 
numpy=..., dtype=float32)> 

Args:

  • method: The method to wrap.

Returns:

The original method wrapped such that it enters the module's name scope.