Attend the Women in ML Symposium on December 7 Register now

tfp.distributions.Zipf

Stay organized with collections Save and categorize content based on your preferences.

Zipf distribution.

Inherits From: Distribution, AutoCompositeTensor

The Zipf distribution is parameterized by a power parameter.

Mathematical Details

The probability mass function (pmf) is,

pmf(k; alpha, k >= 0) = (k^(-alpha)) / Z
Z = zeta(alpha).

where power = alpha and Z is the normalization constant. zeta is the Riemann zeta function.

Note that gradients with respect to the power parameter are not supported in the current implementation.

power Float like Tensor representing the power parameter. Must be strictly greater than 1.
dtype The dtype of Tensor returned by sample. Default value: tf.int32.
force_probs_to_zero_outside_support Python bool. When True, non-integer values are evaluated "strictly": log_prob returns -inf, prob returns 0, and cdf and sf correspond. When False, the implementation is free to save computation (and TF graph size) by evaluating something that matches the Zipf pmf at integer values k but produces an unrestricted result on other inputs. In the case of Zipf, the log_prob formula in this case happens to be the continuous function -power log(k) - log(zeta(power)). Note that this function is not itself a normalized probability log-density. Default value: False.
sample_maximum_iterations Maximum number of iterations of allowable iterations in sample. When validate_args=True, samples which fail to reach convergence (subject to this cap) are masked out with self.dtype.min or nan depending on self.dtype.is_integer. Default value: 100.
validate_args Python bool, default False. When True distribution parameters are checked for validity despite possibly degrading runtime performance. When False invalid inputs may silently render incorrect outputs. Default value: False.
allow_nan_stats Python bool, default True. When True, statistics (e.g., mean, mode, variance) use the value "NaN" to indicate the result is undefined. When False, an exception is raised if one or more of the statistic's batch members are undefined. Default value: False.
name Python str name prefixed to Ops created by this class. Default value: 'Zipf'.

TypeError if power is not float like.

allow_nan_stats Python bool describing behavior when a stat is undefined.

Stats return +/- infinity when it makes sense. E.g., the variance of a Cauchy distribution is infinity. However, sometimes the statistic is undefined, e.g., if a distribution's pdf does not achieve a maximum within the support of the distribution, the mode is undefined. If the mean is undefined, then by definition the variance is undefined. E.g. the mean for Student's T for df = 1 is undefined (no clear way to say it is either + or - infinity), so the variance = E[(X - mean)**2] is also undefined.

batch_shape Shape of a single sample from a single event index as a TensorShape.

May be partially defined or unknown.

The batch dimensions are indexes into independent, non-identical parameterizations of this distribution.

dtype The DType of Tensors handled by this Distribution.
event_shape Shape of a single sample from a single batch as a TensorShape.

May be partially defined or unknown.

experimental_shard_axis_names The list or structure of lists of active shard axis names.
force_probs_to_zero_outside_support Return 0 probabilities on non-integer inputs.
name Name prepended to all ops created by this Distribution.
name_scope Returns a tf.name_scope instance for this class.
non_trainable_variables Sequence of non-trainable variables owned by this module and its submodules.

parameters Dictionary of parameters used to instantiate this Distribution.
power Exponent parameter.
reparameterization_type Describes how samples from the distribution are reparameterized.

Currently this is one of the static instances tfd.FULLY_REPARAMETERIZED or tfd.NOT_REPARAMETERIZED.

sample_maximum_iterations Maximum number of allowable iterations in sample.
submodules Sequence of all sub-modules.

Submodules are modules which are properties of this module, or found as properties of modules which are properties of this module (and so on).

a = tf.Module()
b = tf.Module()
c = tf.Module()
a.b = b
b.c = c
list(a.submodules) == [b, c]
True
list(b.submodules) == [c]
True
list(c.submodules) == []
True

trainable_variables Sequence of trainable variables owned by this module and its submodules.

validate_args Python bool indicating possibly expensive checks are enabled.
variables Sequence of variables owned by this module and its submodules.

Methods

batch_shape_tensor

View source

Shape of a single sample from a single event index as a 1-D Tensor.

The batch dimensions are indexes into independent, non-identical parameterizations of this distribution.

Args
name name to give to the op

Returns
batch_shape Tensor.

cdf

View source

Cumulative distribution function.

Given random variable X, the cumulative distribution function cdf is:

cdf(x) := P[X <= x]

Args
value float or double Tensor.
name Python str prepended to names of ops created by this function.
**kwargs Named arguments forwarded to subclass implementation.

Returns
cdf a Tensor of shape sample_shape(x) + self.batch_shape with values of type self.dtype.

copy

View source

Creates a deep copy of the distribution.

Args
**override_parameters_kwargs String/value dictionary of initialization arguments to override with new values.

Returns
distribution A new instance of type(self) initialized from the union of self.parameters and override_parameters_kwargs, i.e., dict(self.parameters, **override_parameters_kwargs).

covariance

View source

Covariance.

Covariance is (possibly) defined only for non-scalar-event distributions.

For example, for a length-k, vector-valued distribution, it is calculated as,

Cov[i, j] = Covariance(X_i, X_j) = E[(X_i - E[X_i]) (X_j - E[X_j])]

where Cov is a (batch of) k x k matrix, 0 <= (i, j) < k, and E denotes expectation.

Alternatively, for non-vector, multivariate distributions (e.g., matrix-valued, Wishart), Covariance shall return a (batch of) matrices under some vectorization of the events, i.e.,

Cov[i, j] = Covariance(Vec(X)_i, Vec(X)_j) = [as above]

where Cov is a (batch of) k' x k' matrices, 0 <= (i, j) < k' = reduce_prod(event_shape), and Vec is some function mapping indices of this distribution's event dimensions to indices of a length-k' vector.

Args
name Python str prepended to names of ops created by this function.
**kwargs Named arguments forwarded to subclass implementation.

Returns
covariance Floating-point Tensor with shape [B1, ..., Bn, k', k'] where the first n dimensions are batch coordinates and k' = reduce_prod(self.event_shape).

cross_entropy

View source

Computes the (Shannon) cro