![]() |
The [Multivariate Student's t-distribution](
Inherits From: Distribution
tfp.distributions.MultivariateStudentTLinearOperator(
df, loc, scale, validate_args=False, allow_nan_stats=True,
name='MultivariateStudentTLinearOperator'
)
https://en.wikipedia.org/wiki/Multivariate_t-distribution) on R^k
.
Mathematical Details
The probability density function (pdf) is,
pdf(x; df, loc, Sigma) = (1 + ||y||**2 / df)**(-0.5 (df + k)) / Z
where,
y = inv(Sigma) (x - loc)
Z = abs(det(Sigma)) sqrt(df pi)**k Gamma(0.5 df) / Gamma(0.5 (df + k))
where:
df
is a positive scalar.loc
is a vector inR^k
,Sigma
is a positive definiteshape' matrix in
R^{k x k}, parameterized as
scale @ scale.T` in this class,Z
denotes the normalization constant, and,||y||**2
denotes the squared Euclidean norm ofy
.
The Multivariate Student's t-distribution distribution is a member of the location-scale family, i.e., it can be constructed as,
X ~ MultivariateT(loc=0, scale=1) # Identity scale, zero shift.
Y = scale @ X + loc
Examples
tfd = tfp.distributions
# Initialize a single 3-variate Student's t.
df = 3.
loc = [1., 2, 3]
scale = [[ 0.6, 0. , 0. ],
[ 0.2, 0.5, 0. ],
[ 0.1, -0.3, 0.4]]
sigma = tf.matmul(scale, scale, adjoint_b=True)
# ==> [[ 0.36, 0.12, 0.06],
# [ 0.12, 0.29, -0.13],
# [ 0.06, -0.13, 0.26]]
mvt = tfd.MultivariateStudentTLinearOperator(
df=df,
loc=loc,
scale=tf.linalg.LinearOperatorLowerTriangular(scale))
# Covariance is closely related to the sigma matrix (for df=3, it is 3x of the
# sigma matrix).
mvt.covariance().eval()
# ==> [[ 1.08, 0.36, 0.18],
# [ 0.36, 0.87, -0.39],
# [ 0.18, -0.39, 0.78]]
# Compute the pdf of an`R^3` observation; return a scalar.
mvt.prob([-1., 0, 1]).eval() # shape: []
<!-- Tabular view -->
<table class="responsive fixed orange">
<colgroup><col width="214px"><col></colgroup>
<tr><th colspan="2"><h2 class="add-link">Args</h2></th></tr>
<tr>
<td>
`df`
</td>
<td>
A positive floating-point `Tensor`. Has shape `[B1, ..., Bb]` where `b
>= 0`.
</td>
</tr><tr>
<td>
`loc`
</td>
<td>
Floating-point `Tensor`. Has shape `[B1, ..., Bb, k]` where `k` is
the event size.
</td>
</tr><tr>
<td>
`scale`
</td>
<td>
Instance of `LinearOperator` with a floating `dtype` and shape
`[B1, ..., Bb, k, k]`.
</td>
</tr><tr>
<td>
`validate_args`
</td>
<td>
Python `bool`, default `False`. Whether to validate input
with asserts. If `validate_args` is `False`, and the inputs are invalid,
correct behavior is not guaranteed.
</td>
</tr><tr>
<td>
`allow_nan_stats`
</td>
<td>
Python `bool`, default `True`. If `False`, raise an
exception if a statistic (e.g. mean/variance/etc...) is undefined for
any batch member If `True`, batch members with valid parameters leading
to undefined statistics will return NaN for this statistic.
</td>
</tr><tr>
<td>
`name`
</td>
<td>
The name to give Ops created by the initializer.
</td>
</tr>
</table>
<!-- Tabular view -->
<table class="responsive fixed orange">
<colgroup><col width="214px"><col></colgroup>
<tr><th colspan="2"><h2 class="add-link">Raises</h2></th></tr>
<tr>
<td>
`TypeError`
</td>
<td>
if not `scale.dtype.is_floating`.
</td>
</tr><tr>
<td>
`ValueError`
</td>
<td>
if not `scale.is_non_singular`.
</td>
</tr>
</table>
<!-- Tabular view -->
<table class="responsive fixed orange">
<colgroup><col width="214px"><col></colgroup>
<tr><th colspan="2"><h2 class="add-link">Attributes</h2></th></tr>
<tr>
<td>
`allow_nan_stats`
</td>
<td>
Python `bool` describing behavior when a stat is undefined.
Stats return +/- infinity when it makes sense. E.g., the variance of a
Cauchy distribution is infinity. However, sometimes the statistic is
undefined, e.g., if a distribution's pdf does not achieve a maximum within
the support of the distribution, the mode is undefined. If the mean is
undefined, then by definition the variance is undefined. E.g. the mean for
Student's T for df = 1 is undefined (no clear way to say it is either + or -
infinity), so the variance = E[(X - mean)**2] is also undefined.
</td>
</tr><tr>
<td>
`batch_shape`
</td>
<td>
Shape of a single sample from a single event index as a `TensorShape`.
May be partially defined or unknown.
The batch dimensions are indexes into independent, non-identical
parameterizations of this distribution.
</td>
</tr><tr>
<td>
`df`
</td>
<td>
The degrees of freedom of the distribution.
This controls the degrees of freedom of the distribution. The tails of the
distribution get more heavier the smaller `df` is. As `df` goes to
infinitiy, the distribution approaches the Multivariate Normal with the same
`loc` and `scale`.
</td>
</tr><tr>
<td>
`dtype`
</td>
<td>
The `DType` of `Tensor`s handled by this `Distribution`.
</td>
</tr><tr>
<td>
`event_shape`
</td>
<td>
Shape of a single sample from a single batch as a `TensorShape`.
May be partially defined or unknown.
</td>
</tr><tr>
<td>
`loc`
</td>
<td>
The location parameter of the distribution.
`loc` applies an elementwise shift to the distribution.
```none
X ~ MultivariateT(loc=0, scale=1) # Identity scale, zero shift.
Y = scale @ X + loc
name
Distribution
.
name_scope
tf.name_scope
instance for this class.
parameters
Distribution
.
reparameterization_type
Currently this is one of the static instances
tfd.FULLY_REPARAMETERIZED
or tfd.NOT_REPARAMETERIZED
.
scale
scale
applies an affine scale to the distribution.
X ~ MultivariateT(loc=0, scale=1) # Identity scale, zero shift.
Y = scale @ X + loc
submodules
Submodules are modules which are properties of this module, or found as properties of modules which are properties of this module (and so on).
a = tf.Module()
b = tf.Module()
c = tf.Module()
a.b = b
b.c = c
list(a.submodules) == [b, c]
True
list(b.submodules) == [c]
True
list(c.submodules) == []
True
trainable_variables
validate_args
bool
indicating possibly expensive checks are enabled.
variables
Methods
batch_shape_tensor
batch_shape_tensor(
name='batch_shape_tensor'
)
Shape of a single sample from a single event index as a 1-D Tensor
.
The batch dimensions are indexes into independent, non-identical parameterizations of this distribution.
Args | |
---|---|
name
|
name to give to the op |
Returns | |
---|---|
batch_shape
|
Tensor .
|
cdf
cdf(
value, name='cdf', **kwargs
)
Cumulative distribution function.
Given random variable X
, the cumulative distribution function cdf
is:
cdf(x) := P[X <= x]
Args | |
---|---|
value
|
float or double Tensor .
|
name
|
Python str prepended to names of ops created by this function.
|
**kwargs
|
Named arguments forwarded to subclass implementation. |
Returns | |
---|---|
cdf
|
a Tensor of shape sample_shape(x) + self.batch_shape with
values of type self.dtype .
|
copy
copy(
**override_parameters_kwargs
)
Creates a deep copy of the distribution.
Args | |
---|---|
**override_parameters_kwargs
|
String/value dictionary of initialization arguments to override with new values. |
Returns | |
---|---|
distribution
|
A new instance of type(self) initialized from the union
of self.parameters and override_parameters_kwargs, i.e.,
dict(self.parameters, **override_parameters_kwargs) .
|
covariance
covariance(
name='covariance', **kwargs
)
Covariance.
Covariance is (possibly) defined only for non-scalar-event distributions.
For example, for a length-k
, vector-valued distribution, it is calculated
as,
Cov[i, j] = Covariance(X_i, X_j) = E[(X_i - E[X_i]) (X_j - E[X_j])]
where Cov
is a (batch of) k x k
matrix, 0 <= (i, j) < k
, and E
denotes expectation.
Alternatively, for non-vector, multivariate distributions (e.g.,
matrix-valued, Wishart), Covariance
shall return a (batch of) matrices
under some vectorization of the events, i.e.,
Cov[i, j] = Covariance(Vec(X)_i, Vec(X)_j) = [as above]
where Cov
is a (batch of) k' x k'
matrices,
0 <= (i, j) < k' = reduce_prod(event_shape)
, and Vec
is some function
mapping indices of this distribution's event dimensions to indices of a
length-k'
vector.
Additional documentation from MultivariateStudentTLinearOperator
:
The covariance for Multivariate Student's t equals
scale @ scale.T * df / (df - 2), when df > 2
infinity, when 1 < df <= 2
NaN, when df <= 1
If self.allow_nan_stats=False
, then an exception will be raised
rather than returning NaN
.
Args | |
---|---|
name
|
Python str prepended to names of ops created by this function.
|
**kwargs
|
Named arguments forwarded to subclass implementation. |
Returns | |
---|---|
covariance
|
Floating-point Tensor with shape [B1, ..., Bn, k', k']
where the first n dimensions are batch coordinates and
k' = reduce_prod(self.event_shape) .
|
cross_entropy
cross_entropy(
other, name='cross_entropy'
)
Computes the (Shannon) cross entropy.
Denote this distribution (self
) by P
and the other
distribution by
Q
. Assuming P, Q
are absolutely continuous with respect to
one another and permit densities p(x) dr(x)
and q(x) dr(x)
, (Shannon)
cross entropy is defined as:
H[P, Q] = E_p[-log q(X)] = -int_F p(x) log q(x) dr(x)
where F
denotes the support of the random variable X ~ P
.
Args | |
---|---|
other
|
tfp.distributions.Distribution instance.
|
name
|
Python str prepended to names of ops created by this function.
|
Returns | |
---|---|
cross_entropy
|
self.dtype Tensor with shape [B1, ..., Bn]
representing n different calculations of (Shannon) cross entropy.
|
entropy
entropy(
name='entropy', **kwargs
)
Shannon entropy in nats.
event_shape_tensor
event_shape_tensor(
name='event_shape_tensor'
)
Shape of a single sample from a single batch as a 1-D int32 Tensor
.
Args | |
---|---|
name
|
name to give to the op |
Returns | |
---|---|
event_shape
|
Tensor .
|
experimental_default_event_space_bijector
experimental_default_event_space_bijector(
*args, **kwargs
)
Bijector mapping the reals (R**n) to the event space of the distribution.
Distributions with continuous support may implement
_default_event_space_bijector
which returns a subclass of
tfp.bijectors.Bijector
that maps R**n to the distribution's event space.
For example, the default bijector for the Beta
distribution
is tfp.bijectors.Sigmoid()
, which maps the real line to [0, 1]
, the
support of the Beta
distribution. The default bijector for the
CholeskyLKJ
distribution is tfp.bijectors.CorrelationCholesky
, which
maps R^(k * (k-1) // 2) to the submanifold of k x k lower triangular
matrices with ones along the diagonal.
The purpose of experimental_default_event_space_bijector
is
to enable gradient descent in an unconstrained space for Variational
Inference and Hamiltonian Monte Carlo methods. Some effort has been made to
choose bijectors such that the tails of the distribution in the
unconstrained space are between Gaussian and Exponential.
For distributions with discrete event space, or for which TFP currently
lacks a suitable bijector, this function returns None
.
Args | |
---|---|
*args
|
Passed to implementation _default_event_space_bijector .
|
**kwargs
|
Passed to implementation _default_event_space_bijector .
|
Returns | |
---|---|
event_space_bijector
|
Bijector instance or None .
|
is_scalar_batch
is_scalar_batch(
name='is_scalar_batch'
)
Indicates that batch_shape == []
.
Args | |
---|---|
name
|
Python str prepended to names of ops created by this function.
|
Returns | |
---|---|
is_scalar_batch
|
bool scalar Tensor .
|
is_scalar_event
is_scalar_event(
name='is_scalar_event'
)
Indicates that event_shape == []
.
Args | |
---|---|
name
|
Python str prepended to names of ops created by this function.
|
Returns | |
---|---|
is_scalar_event
|
bool scalar Tensor .
|
kl_divergence
kl_divergence(
other, name='kl_divergence'
)
Computes the Kullback--Leibler divergence.
Denote this distribution (self
) by p
and the other
distribution by
q
. Assuming p, q
are absolutely continuous with respect to reference
measure r
, the KL divergence is defined as:
KL[p, q] = E_p[log(p(X)/q(X))]
= -int_F p(x) log q(x) dr(x) + int_F p(x) log p(x) dr(x)
= H[p, q] - H[p]
where F
denotes the support of the random variable X ~ p
, H[., .]
denotes (Shannon) cross entropy, and H[.]
denotes (Shannon) entropy.
Args | |
---|---|
other
|
tfp.distributions.Distribution instance.
|
name
|
Python str prepended to names of ops created by this function.
|
Returns | |
---|---|
kl_divergence
|
self.dtype Tensor with shape [B1, ..., Bn]
representing n different calculations of the Kullback-Leibler
divergence.
|
log_cdf
log_cdf(
value, name='log_cdf', **kwargs
)
Log cumulative distribution function.
Given random variable X
, the cumulative distribution function cdf
is:
log_cdf(x) := Log[ P[X <= x] ]
Often, a numerical approximation can be used for log_cdf(x)
that yields
a more accurate answer than simply taking the logarithm of the cdf
when
x << -1
.
Args | |
---|---|
value
|
float or double Tensor .
|
name
|
Python str prepended to names of ops created by this function.
|
**kwargs
|
Named arguments forwarded to subclass implementation. |
Returns | |
---|---|
logcdf
|
a Tensor of shape sample_shape(x) + self.batch_shape with
values of type self.dtype .
|
log_prob
log_prob(
value, name='log_prob', **kwargs
)
Log probability density/mass function.
Args | |
---|---|
value
|
float or double Tensor .
|
name
|
Python str prepended to names of ops created by this function.
|
**kwargs
|
Named arguments forwarded to subclass implementation. |
Returns | |
---|---|
log_prob
|
a Tensor of shape sample_shape(x) + self.batch_shape with
values of type self.dtype .
|
log_survival_function
log_survival_function(
value, name='log_survival_function', **kwargs
)
Log survival function.
Given random variable X
, the survival function is defined:
log_survival_function(x) = Log[ P[X > x] ]
= Log[ 1 - P[X <= x] ]
= Log[ 1 - cdf(x) ]
Typically, different numerical approximations can be used for the log
survival function, which are more accurate than 1 - cdf(x)
when x >> 1
.
Args | |
---|---|
value
|
float or double Tensor .
|
name
|
Python str prepended to names of ops created by this function.
|
**kwargs
|
Named arguments forwarded to subclass implementation. |
Returns | |
---|---|
Tensor of shape sample_shape(x) + self.batch_shape with values of type
self.dtype .
|
mean
mean(
name='mean', **kwargs
)
Mean.
Additional documentation from MultivariateStudentTLinearOperator
:
The mean of Student's T equals loc
if df > 1
, otherwise it is
NaN
. If self.allow_nan_stats=False
, then an exception will be raised
rather than returning NaN
.
mode
mode(
name='mode', **kwargs
)
Mode.
param_shapes
@classmethod
param_shapes( sample_shape, name='DistributionParamShapes' )
Shapes of parameters given the desired shape of a call to sample()
. (deprecated)
This is a class method that describes what key/value arguments are required
to instantiate the given Distribution
so that a particular shape is
returned for that instance's call to sample()
.
Subclasses should override class method _param_shapes
.
Args | |
---|---|
sample_shape
|
Tensor or python list/tuple. Desired shape of a call to
sample() .
|
name
|
name to prepend ops with. |
Returns | |
---|---|
dict of parameter name to Tensor shapes.
|
param_static_shapes
@classmethod
param_static_shapes( sample_shape )
param_shapes with static (i.e. TensorShape
) shapes. (deprecated)
This is a class method that describes what key/value arguments are required
to instantiate the given Distribution
so that a particular shape is
returned for that instance's call to sample()
. Assumes that the sample's
shape is known statically.
Subclasses should override class method _param_shapes
to return
constant-valued tensors when constant values are fed.
Args | |
---|---|
sample_shape
|
TensorShape or python list/tuple. Desired shape of a call
to sample() .
|
Returns | |
---|---|
dict of parameter name to TensorShape .
|
Raises | |
---|---|
ValueError
|
if sample_shape is a TensorShape and is not fully defined.
|
parameter_properties
@classmethod
parameter_properties( dtype=tf.float32, num_classes=None )
Returns a dict mapping constructor arg names to property annotations.
This dict should include an entry for each of the distribution's
Tensor
-valued constructor arguments.
Args | |
---|---|
dtype
|
Optional float dtype to assume for continuous-valued parameters.
Some constraining bijectors require advance knowledge of the dtype
because certain constants (e.g., tfb.Softplus.low ) must be
instantiated with the same dtype as the values to be transformed.
|
num_classes
|
Optional int Tensor number of classes to assume when
inferring the shape of parameters for categorical-like distributions.
Otherwise ignored.
|
Returns | |
---|---|
parameter_properties
|
A
str -> tfp.python.internal.parameter_properties.ParameterPropertiesdict mapping constructor argument names to ParameterProperties`
instances.
|
prob
prob(
value, name='prob', **kwargs
)
Probability density/mass function.
Args | |
---|---|
value
|
float or double Tensor .
|
name
|
Python str prepended to names of ops created by this function.
|
**kwargs
|
Named arguments forwarded to subclass implementation. |
Returns | |
---|---|
prob
|
a Tensor of shape sample_shape(x) + self.batch_shape with
values of type self.dtype .
|
quantile
quantile(
value, name='quantile', **kwargs
)
Quantile function. Aka 'inverse cdf' or 'percent point function'.
Given random variable X
and p in [0, 1]
, the quantile
is:
quantile(p) := x such that P[X <= x] == p
Args | |
---|---|
value
|
float or double Tensor .
|
name
|
Python str prepended to names of ops created by this function.
|
**kwargs
|
Named arguments forwarded to subclass implementation. |
Returns | |
---|---|
quantile
|
a Tensor of shape sample_shape(x) + self.batch_shape with
values of type self.dtype .
|
sample
sample(
sample_shape=(), seed=None, name='sample', **kwargs
)
Generate samples of the specified shape.
Note that a call to sample()
without arguments will generate a single
sample.
Args | |
---|---|
sample_shape
|
0D or 1D int32 Tensor . Shape of the generated samples.
|
seed
|
Python integer or tfp.util.SeedStream instance, for seeding PRNG.
|
name
|
name to give to the op. |
**kwargs
|
Named arguments forwarded to subclass implementation. |
Returns | |
---|---|
samples
|
a Tensor with prepended dimensions sample_shape .
|
stddev
stddev(
name='stddev', **kwargs
)
Standard deviation.
Standard deviation is defined as,
stddev = E[(X - E[X])**2]**0.5
where X
is the random variable associated with this distribution, E
denotes expectation, and stddev.shape = batch_shape + event_shape
.
Additional documentation from MultivariateStudentTLinearOperator
:
The standard deviation for Student's T equals
sqrt(diag(scale @ scale.T)) * df / (df - 2), when df > 2
infinity, when 1 < df <= 2
NaN, when df <= 1
Args | |
---|---|
name
|
Python str prepended to names of ops created by this function.
|
**kwargs
|
Named arguments forwarded to subclass implementation. |
Returns | |
---|---|
stddev
|
Floating-point Tensor with shape identical to
batch_shape + event_shape , i.e., the same shape as self.mean() .
|
survival_function
survival_function(
value, name='survival_function', **kwargs
)
Survival function.
Given random variable X
, the survival function is defined:
survival_function(x) = P[X > x]
= 1 - P[X <= x]
= 1 - cdf(x).
Args | |
---|---|
value
|
float or double Tensor .
|
name
|
Python str prepended to names of ops created by this function.
|
**kwargs
|
Named arguments forwarded to subclass implementation. |
Returns | |
---|---|
Tensor of shape sample_shape(x) + self.batch_shape with values of type
self.dtype .
|
variance
variance(
name='variance', **kwargs
)
Variance.
Variance is defined as,
Var = E[(X - E[X])**2]
where X
is the random variable associated with this distribution, E
denotes expectation, and Var.shape = batch_shape + event_shape
.
Additional documentation from MultivariateStudentTLinearOperator
:
The variance for Student's T equals
diag(scale @ scale.T) * df / (df - 2), when df > 2
infinity, when 1 < df <= 2
NaN, when df <= 1
If self.allow_nan_stats=False
, then an exception will be raised
rather than returning NaN
.
Args | |
---|---|
name
|
Python str prepended to names of ops created by this function.
|
**kwargs
|
Named arguments forwarded to subclass implementation. |
Returns | |
---|---|
variance
|
Floating-point Tensor with shape identical to
batch_shape + event_shape , i.e., the same shape as self.mean() .
|
with_name_scope
@classmethod
with_name_scope( method )
Decorator to automatically enter the module name scope.
class MyModule(tf.Module):
@tf.Module.with_name_scope
def __call__(self, x):
if not hasattr(self, 'w'):
self.w = tf.Variable(tf.random.normal([x.shape[1], 3]))
return tf.matmul(x, self.w)
Using the above module would produce tf.Variable
s and tf.Tensor
s whose
names included the module name:
mod = MyModule()
mod(tf.ones([1, 2]))
<tf.Tensor: shape=(1, 3), dtype=float32, numpy=..., dtype=float32)>
mod.w
<tf.Variable 'my_module/Variable:0' shape=(2, 3) dtype=float32,
numpy=..., dtype=float32)>
Args | |
---|---|
method
|
The method to wrap. |
Returns | |
---|---|
The original method wrapped such that it enters the module's name scope. |
__getitem__
__getitem__(
slices
)
Slices the batch axes of this distribution, returning a new instance.
b = tfd.Bernoulli(logits=tf.zeros([3, 5, 7, 9]))
b.batch_shape # => [3, 5, 7, 9]
b2 = b[:, tf.newaxis, ..., -2:, 1::2]
b2.batch_shape # => [3, 1, 5, 2, 4]
x = tf.random.normal([5, 3, 2, 2])
cov = tf.matmul(x, x, transpose_b=True)
chol = tf.linalg.cholesky(cov)
loc = tf.random.normal([4, 1, 3, 1])
mvn = tfd.MultivariateNormalTriL(loc, chol)
mvn.batch_shape # => [4, 5, 3]
mvn.event_shape # => [2]
mvn2 = mvn[:, 3:, ..., ::-1, tf.newaxis]
mvn2.batch_shape # => [4, 2, 3, 1]
mvn2.event_shape # => [2]
Args | |
---|---|
slices
|
slices from the [] operator |
Returns | |
---|---|
dist
|
A new tfd.Distribution instance with sliced parameters.
|
__iter__
__iter__()