Announcing the TensorFlow Dev Summit 2020 Learn more

tfp.experimental.marginalize.MarginalizableJointDistributionCoroutine

View source on GitHub

Class MarginalizableJointDistributionCoroutine

Joint distribution parameterized by a distribution-making generator.

Inherits From: JointDistributionCoroutine

This distribution enables both sampling and joint probability computation from a single model specification.

A joint distribution is a collection of possibly interdependent distributions. The JointDistributionCoroutine is specified by a generator that generates the elements of this collection.

Mathematical Details

The JointDistributionCoroutine implements the chain rule of probability. That is, the probability function of a length-d vector x is,

p(x) = prod{ p(x[i] | x[:i]) : i = 0, ..., (d - 1) }

The JointDistributionCoroutine is parameterized by a generator that yields tfp.distributions.Distribution-like instances.

Each element yielded implements the i-th full conditional distribution, p(x[i] | x[:i]). Within the generator, the return value from the yield is a sample from the distribution that may be used to construct subsequent yielded Distribution-like instances. This allows later instances to be conditional on earlier ones.

When the sample method for a JointDistributionCoroutine is called with a sample_shape, the sample method for each of the yielded distributions is called. The distributions that have been wrapped in the JointDistributionCoroutine.Root class will be called with sample_shape as the sample_shape argument, and the unwrapped distributions will be called with () as the sample_shape argument.

It is the user's responsibility to ensure that each of the distributions generates samples with the specified sample size.

Name resolution: The names of JointDistributionCoroutine components may be specified by passing name arguments to distribution constructors ( `tfd.Normal(0., 1., name='x')). Components without an explicit name will be assigned a dummy name.

Examples

tfd = tfp.distributions

# Consider the following generative model:
#     e ~ Exponential(rate=[100, 120])
#     g ~ Gamma(concentration=e[0], rate=e[1])
#     n ~ Normal(loc=0, scale=2.)
#     m ~ Normal(loc=n, scale=g)

# In TFP, we can write this as:
Root = tfd.JointDistributionCoroutine.Root  # Convenient alias.
def model():
  e = yield Root(tfd.Independent(tfd.Exponential(rate=[100, 120]), 1))
  g = yield tfd.Gamma(concentration=e[..., 0], rate=e[..., 1])
  n = yield Root(tfd.Normal(loc=0, scale=2.))
  m = yield tfd.Normal(loc=n, scale=g)

joint = tfd.JointDistributionCoroutine(model)

x = joint.sample()
# ==> x is A length-4 tuple of Tensors representing a draw/realization from
#     each distribution.
joint.log_prob(x)
# ==> A scalar `Tensor` representing the total log prob under all four
#     distributions.

Discussion

Each element yielded by the generator must be a tfd.Distribution-like instance.

An object is deemed 'tfd.Distribution-like' if it has a sample, log_prob, and distribution properties, e.g., batch_shape, event_shape, dtype.

Consider the following fragment from a generator:

  n = yield Root(tfd.Normal(loc=0, scale=2.))
  m = yield tfd.Normal(loc=n, scale=1.0)

The random variable n has no dependence on earlier random variables and Root is used to indicate that its distribution needs to be passed a sample_shape. On the other hand, the distribution of m is constructed using the value of n. This means that n is already shaped according to the sample_shape and there is no need to pass m's distribution a sample_size. So Root is not used to wrap m's distribution.

Note: unlike most other distributions in tfp.distributions, JointDistributionCoroutine.sample returns a tuple of Tensors rather than a Tensor. Accordingly joint.batch_shape returns a tuple of TensorShapes for each of the distributions' batch shapes and joint.batch_shape_tensor() returns a tuple of Tensors for each of the distributions' event shapes. (Same with event_shape analogues.)

__init__

__init__(
    model,
    sample_dtype=None,
    validate_args=False,
    name=None
)

Construct the JointDistributionCoroutine distribution.

Args:

  • model: A generator that yields a sequence of tfd.Distribution-like instances.
  • sample_dtype: Samples from this distribution will be structured like tf.nest.pack_sequence_as(sampledtype, list). sample_dtype is only used for tf.nest.pack_sequence_as structuring of outputs, never casting (which is the responsibility of the component distributions). Default value: None (i.e., tuple).
  • validate_args: Python bool. Whether to validate input with asserts. If validate_args is False, and the inputs are invalid, correct behavior is not guaranteed. Default value: False.
  • name: The name for ops managed by the distribution. Default value: None (i.e., JointDistributionCoroutine).

Child Classes

class Root

Properties

allow_nan_stats

Python bool describing behavior when a stat is undefined.

Stats return +/- infinity when it makes sense. E.g., the variance of a Cauchy distribution is infinity. However, sometimes the statistic is undefined, e.g., if a distribution's pdf does not achieve a maximum within the support of the distribution, the mode is undefined. If the mean is undefined, then by definition the variance is undefined. E.g. the mean for Student's T for df = 1 is undefined (no clear way to say it is either + or - infinity), so the variance = E[(X - mean)**2] is also undefined.

Returns:

  • allow_nan_stats: Python bool.

batch_shape

Shape of a single sample from a single event index as a TensorShape.

May be partially defined or unknown.

The batch dimensions are indexes into independent, non-identical parameterizations of this distribution.

Returns:

  • batch_shape: tuple of TensorShapes representing the batch_shape for each distribution in model.

dtype

The DType of Tensors handled by this Distribution.

event_shape

Shape of a single sample from a single batch as a TensorShape.

May be partially defined or unknown.

Returns:

  • event_shape: tuple of TensorShapes representing the event_shape for each distribution in model.

model

name

Name prepended to all ops created by this Distribution.

name_scope

Returns a tf.name_scope instance for this class.

parameters

Dictionary of parameters used to instantiate this Distribution.

reparameterization_type

Describes how samples from the distribution are reparameterized.

Currently this is one of the static instances tfd.FULLY_REPARAMETERIZED or tfd.NOT_REPARAMETERIZED.

Returns:

  • reparameterization_type: ReparameterizationType of each distribution in model.

submodules

Sequence of all sub-modules.

Submodules are modules which are properties of this module, or found as properties of modules which are properties of this module (and so on).

a = tf.Module()
b = tf.Module()
c = tf.Module()
a.b = b
b.c = c
assert list(a.submodules) == [b, c]
assert list(b.submodules) == [c]
assert list(c.submodules) == []

Returns:

A sequence of all submodules.

trainable_variables

Sequence of trainable variables owned by this module and its submodules.

Returns:

A sequence of variables for the current module (sorted by attribute name) followed by variables from all submodules recursively (breadth first).

validate_args

Python bool indicating possibly expensive checks are enabled.

variables

Sequence of variables owned by this module and its submodules.

Returns:

A sequence of variables for the current module (sorted by attribute name) followed by variables from all submodules recursively (breadth first).

Methods

__getitem__

View source

__getitem__(slices)

Slices the batch axes of this distribution, returning a new instance.

b = tfd.Bernoulli(logits=tf.zeros([3, 5, 7, 9]))
b.batch_shape  # => [3, 5, 7, 9]
b2 = b[:, tf.newaxis, ..., -2:, 1::2]
b2.batch_shape  # => [3, 1, 5, 2, 4]

x = tf.random.normal([5, 3, 2, 2])
cov = tf.matmul(x, x, transpose_b=True)
chol = tf.cholesky(cov)
loc = tf.random.normal([4, 1, 3, 1])
mvn = tfd.MultivariateNormalTriL(loc, chol)
mvn.batch_shape  # => [4, 5, 3]
mvn.event_shape  # => [2]
mvn2 = mvn[:, 3:, ..., ::-1, tf.newaxis]
mvn2.batch_shape  # => [4, 2, 3, 1]
mvn2.event_shape  # => [2]

Args:

  • slices: slices from the [] operator

Returns:

  • dist: A new tfd.Distribution instance with sliced parameters.

__iter__

View source

__iter__()

batch_shape_tensor

View source

batch_shape_tensor(
    sample_shape=(),
    name='batch_shape_tensor'
)

Shape of a single sample from a single event index as a 1-D Tensor.

The batch dimensions are indexes into independent, non-identical parameterizations of this distribution.

Args:

  • sample_shape: The sample shape under which to evaluate the joint distribution. Sample shape at root (toplevel) nodes may affect the batch or event shapes of child nodes.
  • name: name to give to the op

Returns:

  • batch_shape: Tensor representing batch shape of each distribution in model.

cdf

View source

cdf(
    value,
    name='cdf',
    **kwargs
)

Cumulative distribution function.

Given random variable X, the cumulative distribution function cdf is:

cdf(x) := P[X <= x]

Args:

  • value: float or double Tensor.
  • name: Python str prepended to names of ops created by this function.
  • **kwargs: Named arguments forwarded to subclass implementation.

Returns:

  • cdf: a Tensor of shape sample_shape(x) + self.batch_shape with values of type self.dtype.

copy

View source

copy(**override_parameters_kwargs)

Creates a deep copy of the distribution.

Args:

  • **override_parameters_kwargs: String/value dictionary of initialization arguments to override with new values.

Returns:

  • distribution: A new instance of type(self) initialized from the union of self.parameters and override_parameters_kwargs, i.e., dict(self.parameters, **override_parameters_kwargs).

covariance

View source

covariance(
    name='covariance',
    **kwargs
)

Covariance.

Covariance is (possibly) defined only for non-scalar-event distributions.

For example, for a length-k, vector-valued distribution, it is calculated as,

Cov[i, j] = Covariance(X_i, X_j) = E[(X_i - E[X_i]) (X_j - E[X_j])]

where Cov is a (batch of) k x k matrix, 0 <= (i, j) < k, and E denotes expectation.

Alternatively, for non-vector, multivariate distributions (e.g., matrix-valued, Wishart), Covariance shall return a (batch of) matrices under some vectorization of the events, i.e.,

Cov[i, j] = Covariance(Vec(X)_i, Vec(X)_j) = [as above]

where Cov is a (batch of) k' x k' matrices, 0 <= (i, j) < k' = reduce_prod(event_shape), and Vec is some function mapping indices of this distribution's event dimensions to indices of a length-k' vector.

Args:

  • name: Python str prepended to names of ops created by this function.
  • **kwargs: Named arguments forwarded to subclass implementation.

Returns:

  • covariance: Floating-point Tensor with shape [B1, ..., Bn, k', k'] where the first n dimensions are batch coordinates and k' = reduce_prod(self.event_shape).

cross_entropy

View source

cross_entropy(
    other,
    name='cross_entropy'
)

Computes the (Shannon) cross entropy.

Denote this distribution (self) by P and the other distribution by Q. Assuming P, Q are absolutely continuous with respect to one another and permit densities p(x) dr(x) and q(x) dr(x), (Shannon) cross entropy is defined as:

H[P, Q] = E_p[-log q(X)] = -int_F p(x) log q(x) dr(x)

where F denotes the support of the random variable X ~ P.

Args:

Returns:

  • cross_entropy: self.dtype Tensor with shape [B1, ..., Bn] representing n different calculations of (Shannon) cross entropy.

entropy

View source

entropy(
    name='entropy',
    **kwargs
)

Shannon entropy in nats.

event_shape_tensor

View source

event_shape_tensor(
    sample_shape=(),
    name='event_shape_tensor'
)

Shape of a single sample from a single batch as a 1-D int32 Tensor.

Args:

  • sample_shape: The sample shape under which to evaluate the joint distribution. Sample shape at root (toplevel) nodes may affect the batch or event shapes of child nodes.
  • name: name to give to the op

Returns:

  • event_shape: tuple of Tensors representing the event_shape for each distribution in model.

is_scalar_batch

View source

is_scalar_batch(name='is_scalar_batch')

Indicates that batch_shape == [].

Args:

  • name: Python str prepended to names of ops created by this function.

Returns:

  • is_scalar_batch: bool scalar Tensor for each distribution in model.

is_scalar_event

View source

is_scalar_event(name='is_scalar_event')

Indicates that event_shape == [].

Args:

  • name: Python str prepended to names of ops created by this function.

Returns:

  • is_scalar_event: bool scalar Tensor for each distribution in model.

kl_divergence

View source

kl_divergence(
    other,
    name='kl_divergence'
)

Computes the Kullback--Leibler divergence.

Denote this distribution (self) by p and the other distribution by q. Assuming p, q are absolutely continuous with respect to reference measure r, the KL divergence is defined as:

KL[p, q] = E_p[log(p(X)/q(X))]
         = -int_F p(x) log q(x) dr(x) + int_F p(x) log p(x) dr(x)
         = H[p, q] - H[p]

where F denotes the support of the random variable X ~ p, H[., .] denotes (Shannon) cross entropy, and H[.] denotes (Shannon) entropy.

Args:

Returns:

  • kl_divergence: self.dtype Tensor with shape [B1, ..., Bn] representing n different calculations of the Kullback-Leibler divergence.

log_cdf

View source

log_cdf(
    value,
    name='log_cdf',
    **kwargs
)

Log cumulative distribution function.

Given random variable X, the cumulative distribution function cdf is:

log_cdf(x) := Log[ P[X <= x] ]

Often, a numerical approximation can be used for log_cdf(x) that yields a more accurate answer than simply taking the logarithm of the cdf when x << -1.

Args:

  • value: float or double Tensor.
  • name: Python str prepended to names of ops created by this function.
  • **kwargs: Named arguments forwarded to subclass implementation.

Returns:

  • logcdf: a Tensor of shape sample_shape(x) + self.batch_shape with values of type self.dtype.

log_prob

View source

log_prob(
    *args,
    **kwargs
)

Log probability density/mass function.

The measure methods of `JointDistribution` (`log_prob`, `prob`, etc.)
can be called either by passing a single structure of tensors or by using
named args for each part of the joint distribution state. For example,
jd = tfd.JointDistributionSequential([
    tfd.Normal(0., 1.),
    lambda z: tfd.Normal(z, 1.)
], validate_args=True)
jd.dtype
# ==> [tf.float32, tf.float32]
z, x = sample = jd.sample()
# The following calling styles are all permissable and produce the exactly
# the same output.
assert (jd.log_prob(sample) ==
        jd.log_prob(value=sample) ==
        jd.log_prob(z, x) ==
        jd.log_prob(z=z, x=x) ==
        jd.log_prob(z, x=x))

# These calling possibilities also imply that one can also use `*`
# expansion, if `sample` is a sequence:
jd.log_prob(*sample)
# and similarly, if `sample` is a map, one can use `**` expansion:
jd.log_prob(**sample)
`JointDistribution` component distributions names are resolved via
`jd._flat_resolve_names()`, which is implemented by each `JointDistribution`
subclass (see subclass documentation for details). Generally, for components
where a name was provided---
either explicitly as the `name` argument to a distribution or as a key in a
dict-valued JointDistribution, or implicitly, e.g., by the argument name of
a `JointDistributionSequential` distribution-making function---the provided
name will be used. Otherwise the component will receive a dummy name; these
may change without warning and should not be relied upon.

Note: not all `JointDistribution` subclasses support all calling styles;
for example, `JointDistributionNamed` does not support positional arguments
(aka "unnamed arguments") unless the provided model specifies an ordering of
variables (i.e., is an `collections.OrderedDict` or `collections.namedtuple`
rather than a plain `dict`).

Note: care is taken to resolve any potential ambiguity---this is generally
possible by inspecting the structure of the provided argument and "aligning"
it to the joint distribution output structure (defined by `jd.dtype`). For
example,
trivial_jd = tfd.JointDistributionSequential([tfd.Exponential(1.)])
trivial_jd.dtype  # => [tf.float32]
trivial_jd.log_prob([4.])
# ==> Tensor with shape `[]`.
lp = trivial_jd.log_prob(4.)
# ==> Tensor with shape `[]`.
Notice that in the first call, `[4.]` is interpreted as a list of one
scalar while in the second call the input is a scalar. Hence both inputs
result in identical scalar outputs. If we wanted to pass an explicit
vector to the `Exponential` component---creating a vector-shaped batch
of `log_prob`s---we could instead write
`trivial_jd.log_prob(np.array([4]))`.

Args:
  *args: Positional arguments: a `value` structure or component values
    (see above).
  **kwargs: Keyword arguments: a `value` structure or component values
    (see above). May also include `name`, specifying a Python string name
    for ops generated by this method.

Returns:

  • log_prob: a Tensor of shape sample_shape(x) + self.batch_shape with values of type self.dtype.

log_prob_parts

View source

log_prob_parts(
    value,
    name='log_prob_parts'
)

Log probability density/mass function.

Args:

  • value: list of Tensors in distribution_fn order for which we compute the log_prob_parts and to parameterize other ("downstream") distributions.
  • name: name prepended to ops created by this function. Default value: "log_prob_parts".

Returns:

  • log_prob_parts: a tuple of Tensors representing the log_prob for each distribution_fn evaluated at each corresponding value.

log_survival_function

View source

log_survival_function(
    value,
    name='log_survival_function',
    **kwargs
)

Log survival function.

Given random variable X, the survival function is defined:

log_survival_function(x) = Log[ P[X > x] ]
                         = Log[ 1 - P[X <= x] ]
                         = Log[ 1 - cdf(x) ]

Typically, different numerical approximations can be used for the log survival function, which are more accurate than 1 - cdf(x) when x >> 1.

Args:

  • value: float or double Tensor.
  • name: Python str prepended to names of ops created by this function.
  • **kwargs: Named arguments forwarded to subclass implementation.

Returns:

Tensor of shape sample_shape(x) + self.batch_shape with values of type self.dtype.

marginalized_log_prob

View source

marginalized_log_prob(
    values,
    name='marginalized_log_prob',
    method='logeinsumexp',
    internal_type=None
)

Log probability density/mass function.

Args:

  • values: Structure of Tensor-values corresponding to samples yielded by model. There are also two special values that can be provided instead of Tensor samples. 'marginalize': treat this random variable as a latent variable that will be marginalized out by summing over the support of the variable. 'tabulate': treat this as a latent variable whose posterior probability distribution is to be computed. The final result is a tensor of log probabilities with each tabulated variable corresponding to one axis of the tensor in the order they appear in the list of values.
  • name: Python str prepended to names of ops created by this function.
  • method: Specifies method by which marginalization is carried out. 'einsum': use einsum. For very small probabilities this may result in underflow causing log probabilities of -inf even when the result shoukd be finite. 'logeinsumexp': performs an einsum designed to work in log space. Although it preserves precision better than the 'einsum' method it can be slow and use more memory.
  • internal_type: because the einsum method can cause underflow this argument allows the user to specify the type in which the einsum is computed. For example tf.float64.

Returns:

Return log probability density/mass of value for this distribution.

Notes:

Currently only a single log probability can be computed, so lists or tensors containing multiple samples from the joint distribution are not supported. The number of latent (i.e. marginalized or tabulated) variables is limited to 52 in this version. The individual samples in tfd.Sample are mathematically independent but the marginalization algorithm used is unable to exploit this fact, meaning that computation time can easily grow exponentially with sample_shape.

mean

View source

mean(
    name='mean',
    **kwargs
)

Mean.

mode

View source

mode(
    name='mode',
    **kwargs
)

Mode.

param_shapes

View source

param_shapes(
    cls,
    sample_shape,
    name='DistributionParamShapes'
)

Shapes of parameters given the desired shape of a call to sample().

This is a class method that describes what key/value arguments are required to instantiate the given Distribution so that a particular shape is returned for that instance's call to sample().

Subclasses should override class method _param_shapes.

Args:

  • sample_shape: Tensor or python list/tuple. Desired shape of a call to sample().
  • name: name to prepend ops with.

Returns:

dict of parameter name to Tensor shapes.

param_static_shapes

View source

param_static_shapes(
    cls,
    sample_shape
)

param_shapes with static (i.e. TensorShape) shapes.

This is a class method that describes what key/value arguments are required to instantiate the given Distribution so that a particular shape is returned for that instance's call to sample(). Assumes that the sample's shape is known statically.

Subclasses should override class method _param_shapes to return constant-valued tensors when constant values are fed.

Args:

  • sample_shape: TensorShape or python list/tuple. Desired shape of a call to sample().

Returns:

dict of parameter name to TensorShape.

Raises:

  • ValueError: if sample_shape is a TensorShape and is not fully defined.

prob

View source

prob(
    *args,
    **kwargs
)

Probability density/mass function.

The measure methods of `JointDistribution` (`log_prob`, `prob`, etc.)
can be called either by passing a single structure of tensors or by using
named args for each part of the joint distribution state. For example,
jd = tfd.JointDistributionSequential([
    tfd.Normal(0., 1.),
    lambda z: tfd.Normal(z, 1.)
], validate_args=True)
jd.dtype
# ==> [tf.float32, tf.float32]
z, x = sample = jd.sample()
# The following calling styles are all permissable and produce the exactly
# the same output.
assert (jd.prob(sample) ==
        jd.prob(value=sample) ==
        jd.prob(z, x) ==
        jd.prob(z=z, x=x) ==
        jd.prob(z, x=x))

# These calling possibilities also imply that one can also use `*`
# expansion, if `sample` is a sequence:
jd.prob(*sample)
# and similarly, if `sample` is a map, one can use `**` expansion:
jd.prob(**sample)
`JointDistribution` component distributions names are resolved via
`jd._flat_resolve_names()`, which is implemented by each `JointDistribution`
subclass (see subclass documentation for details). Generally, for components
where a name was provided---
either explicitly as the `name` argument to a distribution or as a key in a
dict-valued JointDistribution, or implicitly, e.g., by the argument name of
a `JointDistributionSequential` distribution-making function---the provided
name will be used. Otherwise the component will receive a dummy name; these
may change without warning and should not be relied upon.

Note: not all `JointDistribution` subclasses support all calling styles;
for example, `JointDistributionNamed` does not support positional arguments
(aka "unnamed arguments") unless the provided model specifies an ordering of
variables (i.e., is an `collections.OrderedDict` or `collections.namedtuple`
rather than a plain `dict`).

Note: care is taken to resolve any potential ambiguity---this is generally
possible by inspecting the structure of the provided argument and "aligning"
it to the joint distribution output structure (defined by `jd.dtype`). For
example,
trivial_jd = tfd.JointDistributionSequential([tfd.Exponential(1.)])
trivial_jd.dtype  # => [tf.float32]
trivial_jd.prob([4.])
# ==> Tensor with shape `[]`.
prob = trivial_jd.prob(4.)
# ==> Tensor with shape `[]`.
Notice that in the first call, `[4.]` is interpreted as a list of one
scalar while in the second call the input is a scalar. Hence both inputs
result in identical scalar outputs. If we wanted to pass an explicit
vector to the `Exponential` component---creating a vector-shaped batch
of `prob`s---we could instead write
`trivial_jd.prob(np.array([4]))`.

Args:
  *args: Positional arguments: a `value` structure or component values
    (see above).
  **kwargs: Keyword arguments: a `value` structure or component values
    (see above). May also include `name`, specifying a Python string name
    for ops generated by this method.

Returns:

  • prob: a Tensor of shape sample_shape(x) + self.batch_shape with values of type self.dtype.

prob_parts

View source

prob_parts(
    value,
    name='prob_parts'
)

Log probability density/mass function.

Args:

  • value: list of Tensors in distribution_fn order for which we compute the prob_parts and to parameterize other ("downstream") distributions.
  • name: name prepended to ops created by this function. Default value: "prob_parts".

Returns:

  • prob_parts: a tuple of Tensors representing the prob for each distribution_fn evaluated at each corresponding value.

quantile

View source

quantile(
    value,
    name='quantile',
    **kwargs
)

Quantile function. Aka 'inverse cdf' or 'percent point function'.

Given random variable X and p in [0, 1], the quantile is:

quantile(p) := x such that P[X <= x] == p

Args:

  • value: float or double Tensor.
  • name: Python str prepended to names of ops created by this function.
  • **kwargs: Named arguments forwarded to subclass implementation.

Returns:

  • quantile: a Tensor of shape sample_shape(x) + self.batch_shape with values of type self.dtype.

sample

View source

sample(
    sample_shape=(),
    seed=None,
    name='sample',
    **kwargs
)

Generate samples of the specified shape.

Note that a call to sample() without arguments will generate a single sample.

Args:

  • sample_shape: 0D or 1D int32 Tensor. Shape of the generated samples.
  • seed: Python integer or tfp.util.SeedStream instance, for seeding PRNG.
  • name: name to give to the op.
  • **kwargs: Named arguments forwarded to subclass implementation.

Returns:

  • samples: a Tensor with prepended dimensions sample_shape.

sample_distributions

View source

sample_distributions(
    sample_shape=(),
    seed=None,
    value=None,
    name='sample_distributions'
)

Generate samples and the (random) distributions.

Note that a call to sample() without arguments will generate a single sample.

Args:

  • sample_shape: 0D or 1D int32 Tensor. Shape of the generated samples.
  • seed: Python integer seed for generating random numbers.
  • value: list of Tensors in distribution_fn order to use to parameterize other ("downstream") distribution makers. Default value: None (i.e., draw a sample from each distribution).
  • name: name prepended to ops created by this function. Default value: "sample_distributions".

Returns:

  • distributions: a tuple of Distribution instances for each of distribution_fn.
  • samples: a tuple of Tensors with prepended dimensions sample_shape for each of distribution_fn.

stddev

View source

stddev(
    name='stddev',
    **kwargs
)

Standard deviation.

Standard deviation is defined as,

stddev = E[(X - E[X])**2]**0.5

where X is the random variable associated with this distribution, E denotes expectation, and stddev.shape = batch_shape + event_shape.

Args:

  • name: Python str prepended to names of ops created by this function.
  • **kwargs: Named arguments forwarded to subclass implementation.

Returns:

  • stddev: Floating-point Tensor with shape identical to batch_shape + event_shape, i.e., the same shape as self.mean().

survival_function

View source

survival_function(
    value,
    name='survival_function',
    **kwargs
)

Survival function.

Given random variable X, the survival function is defined:

survival_function(x) = P[X > x]
                     = 1 - P[X <= x]
                     = 1 - cdf(x).

Args:

  • value: float or double Tensor.
  • name: Python str prepended to names of ops created by this function.
  • **kwargs: Named arguments forwarded to subclass implementation.

Returns:

Tensor of shape sample_shape(x) + self.batch_shape with values of type self.dtype.

variance

View source

variance(
    name='variance',
    **kwargs
)

Variance.

Variance is defined as,

Var = E[(X - E[X])**2]

where X is the random variable associated with this distribution, E denotes expectation, and Var.shape = batch_shape + event_shape.

Args:

  • name: Python str prepended to names of ops created by this function.
  • **kwargs: Named arguments forwarded to subclass implementation.

Returns:

  • variance: Floating-point Tensor with shape identical to batch_shape + event_shape, i.e., the same shape as self.mean().

with_name_scope

with_name_scope(
    cls,
    method
)

Decorator to automatically enter the module name scope.

class MyModule(tf.Module):
  @tf.Module.with_name_scope
  def __call__(self, x):
    if not hasattr(self, 'w'):
      self.w = tf.Variable(tf.random.normal([x.shape[1], 64]))
    return tf.matmul(x, self.w)

Using the above module would produce tf.Variables and tf.Tensors whose names included the module name:

mod = MyModule()
mod(tf.ones([8, 32]))
# ==> <tf.Tensor: ...>
mod.w
# ==> <tf.Variable ...'my_module/w:0'>

Args:

  • method: The method to wrap.

Returns:

The original method wrapped such that it enters the module's name scope.