![]() |
Compute the Expected Calibration Error (ECE).
tfp.substrates.jax.stats.expected_calibration_error(
num_bins, logits=None, labels_true=None, labels_predicted=None, name=None
)
This method implements equation (3) in [1]. In this equation the probability of the decided label being correct is used to estimate the calibration property of the predictor.
References
[1]: Chuan Guo, Geoff Pleiss, Yu Sun, Kilian Q. Weinberger, On Calibration of Modern Neural Networks. Proceedings of the 34th International Conference on Machine Learning (ICML 2017). arXiv:1706.04599 https://arxiv.org/pdf/1706.04599.pdf
Args | |
---|---|
num_bins
|
int, number of probability bins, e.g. 10. |
logits
|
Tensor, (n,nlabels), with logits for n instances and nlabels. |
labels_true
|
Tensor, (n,), with tf.int32 or tf.int64 elements containing ground truth class labels in the range [0,nlabels]. |
labels_predicted
|
Tensor, (n,), with tf.int32 or tf.int64 elements
containing decisions of the predictive system. If None , we will use
the argmax decision using the logits .
|
name
|
Python str name prefixed to Ops created by this function.
|
Returns | |
---|---|
ece
|
Tensor, scalar, tf.float32. |