View source on GitHub |
Computes a conjugate normal posterior for a Bayesian linear regression.
tfp.substrates.numpy.distributions.mvn_conjugate_linear_update(
prior_scale,
linear_transformation,
likelihood_scale,
observation,
prior_mean=None,
name=None
)
We assume the following model:
latent ~ MVN(loc=prior_mean, scale=prior_scale)
observation ~ MVN(loc=linear_transformation.matvec(latent),
scale=likelihood_scale)
For Bayesian linear regression, the latent
represents the weights, and the
provided linear_transformation
is the design matrix.
This method computes the multivariate normal
posterior p(latent | observation)
, using LinearOperator
s to perform
perform computations efficiently when the matrices involved have special
structure.
Args | |
---|---|
prior_scale
|
Instance of tf.linalg.LinearOperator of shape
[..., num_features, num_features] , specifying a
scale matrix (any matrix L such that LL' = Q where Q is the
covariance) for the prior on regression weights. May optionally be a
float Tensor .
|
linear_transformation
|
Instance of tf.linalg.LinearOperator of shape
[..., num_outputs, num_features]) , specifying a transformation of the
latent values. May optionally be a float Tensor .
|
likelihood_scale
|
Instance of tf.linalg.LinearOperator of shape
[..., num_outputs, num_outputs] specifying a scale matrix (any matrix
L such that LL' = Q where Q is the covariance) for the likelihood
of observed targets. May optionally be a float Tensor .
|
observation
|
Float Tensor of shape [..., num_outputs]]), specifying the
observed values or regression targets.
</td>
</tr><tr>
<td> prior_mean<a id="prior_mean"></a>
</td>
<td>
Optional float Tensorof shape [..., num_features],
specifying the prior mean. If None, the prior mean is assumed to be
zero and some computation is avoided.
Default value: None.
</td>
</tr><tr>
<td> name<a id="name"></a>
</td>
<td>
Option Python str` name given to ops created by this function.
Default value: 'mvn_conjugate_linear_update'.
|
Returns | |
---|---|
posterior_mean
|
Float Tensor of shape [..., num_features] , giving the
mean of the multivariate normal posterior on the latent value.
|
posterior_prec
|
Instance of tf.linalg.LinearOperator of shape
shape [..., num_features, num_features] , giving the
posterior precision (inverse covariance) matrix.
|
Mathematical details
Let the prior precision be denoted by
prior_prec = prior_scale.matmul(prior_scale, adjoint_arg=True).inverse()
and the likelihood precision by likelihood_prec = likelihood_scale.matmul(
likelihood_scale, adjoint_arg=True).inverse()
. Then the posterior
p(latent | observation)
is multivariate normal with precision
posterior_prec = (
linear_transformation.matmul(
likelihood_prec.matmul(linear_transformation), adjoint=True) +
prior_prec)
and mean
posterior_mean = posterior_prec.solvevec(
linear_transformation.matvec(
likelihood_prec.matvec(observation) +
prior_prec.matvec(prior_mean)))