View source on GitHub |
Sum of structural time series components.
Inherits From: StructuralTimeSeries
tfp.sts.Sum(
components,
constant_offset=None,
observation_noise_scale_prior=None,
observed_time_series=None,
name=None
)
Used in the notebooks
Used in the tutorials |
---|
This class enables compositional specification of a structural time series model from basic components. Given a list of component models, it represents an additive model, i.e., a model of time series that may be decomposed into a sum of terms corresponding to the component models.
Formally, the additive model represents a random process
g[t] = f1[t] + f2[t] + ... + fN[t] + eps[t]
, where the f
's are the
random processes represented by the components, and
eps[t] ~ Normal(loc=0, scale=observation_noise_scale)
is an observation
noise term. See the AdditiveStateSpaceModel
documentation for mathematical
details.
This model inherits the parameters (with priors) of its components, and
adds an observation_noise_scale
parameter governing the level of noise in
the observed time series.
Examples
To construct a model combining a local linear trend with a day-of-week effect:
local_trend = tfp.sts.LocalLinearTrend(
observed_time_series=observed_time_series,
name='local_trend')
day_of_week_effect = tfp.sts.Seasonal(
num_seasons=7,
observed_time_series=observed_time_series,
name='day_of_week_effect')
additive_model = tfp.sts.Sum(
components=[local_trend, day_of_week_effect],
observed_time_series=observed_time_series)
print([p.name for p in additive_model.parameters])
# => `[observation_noise_scale,
# local_trend_level_scale,
# local_trend_slope_scale,
# day_of_week_effect_drift_scale`]
print(local_trend.latent_size,
seasonal.latent_size,
additive_model.latent_size)
# => `2`, `7`, `9`
Args | |
---|---|
components
|
Python list of one or more StructuralTimeSeries instances.
These must have unique names.
|
constant_offset
|
optional float Tensor of shape broadcasting to
concat([batch_shape, [num_timesteps]] ) specifying a constant value
added to the sum of outputs from the component models.
This allows the components to model the shifted series
observed_time_series - constant_offset . If None , this is set to the
mean of the provided observed_time_series .
Default value: None .
|
observation_noise_scale_prior
|
optional tfd.Distribution instance
specifying a prior on observation_noise_scale . If None , a heuristic
default prior is constructed based on the provided
observed_time_series .
Default value: None .
|
observed_time_series
|
optional float Tensor of shape
batch_shape + [T, 1] (omitting the trailing unit dimension is also
supported when T > 1 ), specifying an observed time series. Any NaN s
are interpreted as missing observations; missingness may be also be
explicitly specified by passing a tfp.sts.MaskedTimeSeries instance.
Any priors not explicitly set will be given default values according to
the scale of the observed time series (or batch of time series).
Default value: None .
|
name
|
Python str name of this model component; used as name_scope
for ops created by this class.
Default value: 'Sum'.
|
Raises | |
---|---|
ValueError
|
if components do not have unique names. |
Methods
batch_shape_tensor
batch_shape_tensor()
Runtime batch shape of models represented by this component.
Returns | |
---|---|
batch_shape
|
int Tensor giving the broadcast batch shape of
all model parameters. This should match the batch shape of
derived state space models, i.e.,
self.make_state_space_model(...).batch_shape_tensor() .
|
copy
copy(
**override_parameters_kwargs
)
Creates a deep copy.
Args | |
---|---|
**override_parameters_kwargs
|
String/value dictionary of initialization arguments to override with new values. |
Returns | |
---|---|
copy
|
A new instance of type(self) initialized from the union
of self.init_parameters and override_parameters_kwargs, i.e.,
dict(self.init_parameters, **override_parameters_kwargs) .
|
get_parameter
get_parameter(
parameter_name
)
Returns the parameter with the given name, or a KeyError.
joint_distribution
joint_distribution(
observed_time_series=None,
num_timesteps=None,
trajectories_shape=(),
initial_step=0,
mask=None,
experimental_parallelize=False
)
Constructs the joint distribution over parameters and observed values.
Args | |
---|---|
observed_time_series
|
Optional observed time series to model, as a
Tensor or tfp.sts.MaskedTimeSeries instance having shape
concat([batch_shape, trajectories_shape, num_timesteps, 1]) . If
an observed time series is provided, the num_timesteps ,
trajectories_shape , and mask arguments are ignored, and
an unnormalized (pinned) distribution over parameter values is returned.
Default value: None .
|
num_timesteps
|
scalar int Tensor number of timesteps to model. This
must be specified either directly or by passing an
observed_time_series .
Default value: 0 .
|
trajectories_shape
|
int Tensor shape of sampled trajectories
for each set of parameter values. Ignored if an observed_time_series
is passed.
Default value: () .
|
initial_step
|
Optional scalar int Tensor specifying the starting
timestep.
Default value: 0 .
|
mask
|
Optional bool Tensor having shape
concat([batch_shape, trajectories_shape, num_timesteps]) , in which
True entries indicate that the series value at the corresponding step
is missing and should be ignored. This argument should be passed only
if observed_time_series is not specified or does not already contain
a missingness mask; it is an error to pass both this
argument and an observed_time_series value containing a missingness
mask.
Default value: None .
|
experimental_parallelize
|
If True , use parallel message passing
algorithms from tfp.experimental.parallel_filter to perform time
series operations in O(log num_timesteps) sequential steps. The
overall FLOP and memory cost may be larger than for the sequential
implementations by a constant factor.
Default value: False .
|
Returns | |
---|---|
joint_distribution
|
joint distribution of model parameters and
observed trajectories. If no observed_time_series was specified, this
is an instance of tfd.JointDistributionNamedAutoBatched with a
random variable for each model parameter (with names and order matching
self.parameters ), plus a final random variable observed_time_series
representing a trajectory(ies) conditioned on the parameters. If
observed_time_series was specified, the return value is given by
joint_distribution.experimental_pin(
observed_time_series=observed_time_series) where joint_distribution
is as just described, so it defines an unnormalized posterior
distribution over the parameters.
|
Example:
The joint distribution can generate prior samples of parameters and trajectories:
from matplotlib import pylab as plt
import tensorflow_probability as tfp
# Sample and plot 100 trajectories from the prior.
model = tfp.sts.LocalLinearTrend()
prior_samples = model.joint_distribution(num_timesteps=200).sample([100])
plt.plot(
tf.linalg.matrix_transpose(prior_samples['observed_time_series'][..., 0]))
It also integrates with TFP inference APIs, providing a more flexible alternative to the STS-specific fitting utilities.
jd = model.joint_distribution(observed_time_series)
# Variational inference.
surrogate_posterior = (
tfp.experimental.vi.build_factored_surrogate_posterior(
event_shape=jd.event_shape,
bijector=jd.experimental_default_event_space_bijector()))
losses = tfp.vi.fit_surrogate_posterior(
target_log_prob_fn=jd.unnormalized_log_prob,
surrogate_posterior=surrogate_posterior,
optimizer=tf.optimizers.Adam(0.1),
num_steps=200)
parameter_samples = surrogate_posterior.sample(50)
# No U-Turn Sampler.
samples, kernel_results = tfp.experimental.mcmc.windowed_adaptive_nuts(
n_draws=500, joint_dist=dist)
joint_log_prob
joint_log_prob(
observed_time_series
)
Build the joint density log p(params) + log p(y|params)
as a callable. (deprecated)
Args | |
---|---|
observed_time_series
|
Observed Tensor trajectories of shape
sample_shape + batch_shape + [num_timesteps, 1] (the trailing
1 dimension is optional if num_timesteps > 1 ), where
batch_shape should match self.batch_shape (the broadcast batch
shape of all priors on parameters for this structural time series
model). Any NaN s are interpreted as missing observations; missingness
may be also be explicitly specified by passing a
tfp.sts.MaskedTimeSeries instance.
|
Returns | |
---|---|
log_joint_fn
|
A function taking a Tensor argument for each model
parameter, in canonical order, and returning a Tensor log probability
of shape batch_shape . Note that, unlike tfp.Distributions
log_prob methods, the log_joint sums over the sample_shape from y,
so that sample_shape does not appear in the output log_prob. This
corresponds to viewing multiple samples in y as iid observations from a
single model, which is typically the desired behavior for parameter
inference.
|
make_component_state_space_models
make_component_state_space_models(
num_timesteps, param_vals, **linear_gaussian_ssm_kwargs
)
Build an ordered list of Distribution instances for component models.
Args | |
---|---|
num_timesteps
|
Python int number of timesteps to model.
|
param_vals
|
a list of Tensor parameter values in order corresponding to
self.parameters , or a dict mapping from parameter names to values.
|
**linear_gaussian_ssm_kwargs
|
Optional additional keyword arguments to
to the base tfd.LinearGaussianStateSpaceModel constructors.
|
Returns | |
---|---|
component_ssms
|
a Python list of LinearGaussianStateSpaceModel
Distribution objects, in order corresponding to self.components .
|
make_state_space_model
make_state_space_model(
num_timesteps,
param_vals,
initial_state_prior=None,
initial_step=0,
**linear_gaussian_ssm_kwargs
)
Instantiate this model as a Distribution over specified num_timesteps
.
Args | |
---|---|
num_timesteps
|
Python int number of timesteps to model.
|
param_vals
|
a list of Tensor parameter values in order corresponding to
self.parameters , or a dict mapping from parameter names to values.
|
initial_state_prior
|
an optional Distribution instance overriding the
default prior on the model's initial state. This is used in forecasting
("today's prior is yesterday's posterior").
|
initial_step
|
optional int specifying the initial timestep to model.
This is relevant when the model contains time-varying components,
e.g., holidays or seasonality.
|
**linear_gaussian_ssm_kwargs
|
Optional additional keyword arguments to
to the base tfd.LinearGaussianStateSpaceModel constructor.
|
Returns | |
---|---|
dist
|
a LinearGaussianStateSpaceModel Distribution object.
|
prior_sample
prior_sample(
num_timesteps,
initial_step=0,
params_sample_shape=(),
trajectories_sample_shape=(),
seed=None
)
Sample from the joint prior over model parameters and trajectories. (deprecated)
Args | |
---|---|
num_timesteps
|
Scalar int Tensor number of timesteps to model.
|
initial_step
|
Optional scalar int Tensor specifying the starting
timestep.
Default value: 0.
|
params_sample_shape
|
Number of possible worlds to sample iid from the
parameter prior, or more generally, Tensor int shape to fill with
iid samples.
Default value: [] (i.e., draw a single sample and don't expand the
shape).
|
trajectories_sample_shape
|
For each sampled set of parameters, number
of trajectories to sample, or more generally, Tensor int shape to
fill with iid samples.
Default value: [] (i.e., draw a single sample and don't expand the
shape).
|
seed
|
PRNG seed; see tfp.random.sanitize_seed for details.
Default value: None .
|
Returns | |
---|---|
trajectories
|
float Tensor of shape
trajectories_sample_shape + params_sample_shape + [num_timesteps, 1]
containing all sampled trajectories.
|
param_samples
|
list of sampled parameter value Tensor s, in order
corresponding to self.parameters , each of shape
params_sample_shape + prior.batch_shape + prior.event_shape .
|
__add__
__add__(
other
)
Models the sum of the series from the two components.