tfp.util.DeferredTensor

View source on GitHub

Variable tracking object which applies function upon convert_to_tensor.

Example

import tensorflow.compat.v2 as tf
import tensorflow_probability as tfp
tfb = tfp.bijectors
tfd = tfp.distributions

# Note: it'd be better to use `tfp.util.TransformedVariable`;
#       this example is for illustration only.
trainable_normal = tfd.Normal(
    loc=tf.Variable(0.),
    scale=tfp.util.DeferredTensor(tf.Variable(0.), tf.math.exp))

trainable_normal.loc
# ==> <tf.Variable 'Variable:0' shape=() dtype=float32, numpy=0.0>

trainable_normal.scale
# ==> <DeferredTensor: dtype=float32, shape=[], fn=exp>

# Operators work with `DeferredTensor`.
trainable_normal.scale + 1.
# ==> 2.

with tf.GradientTape() as tape:
  negloglik = -trainable_normal.log_prob(0.5)
g = tape.gradient(negloglik, trainable_normal.trainable_variables)
# ==> (-0.5, 0.75)

Which we could then fit as:

opt = tf.optimizers.Adam(learning_rate=0.05)
loss = tf.function(lambda: -trainable_normal.log_prob(0.5), autograph=True)
for _ in range(int(1e3)):
  opt.minimize(loss, trainable_normal.trainable_variables)
trainable_normal.mean()
# ==> 0.5
trainable_normal.stddev()
# ==> (approximately) 0.0075

It is also possible to parameterize a DeferredTensor with a bijector, e.g.:

# Note: it'd be better to use `tfp.util.TransformedVariable`;
#       this example is for illustration only.
d = tfd.Normal(loc=0.,
               scale=tfp.util.DeferredTensor(tf.Variable([0.54, 1.85]),
                                             tfb.Softplus()))
d.stddev()
# ==> [1., 2.]
tf.convert_to_tensor(d.scale)
# ==> [1., 2.]

pretransformed_input object with shape, dtype properties (typically a tf.Variable) passed into transform_fn when this object is acted upon in a Tensor context, eg, tf.convert_to_tensor, +, tf.math.exp, etc.
transform_fn Python callable or tfp.bijectors.Bijector-like instance. When callable, should take pretransformed_input and return a Tensor (representing by this object).
dtype Equivalent to what would otherwise be transform_fn(pretransformed_input).dtype. Default value: None (i.e., getattr(transform_fn, 'dtype', None) or pretransformed_input.dtype).
shape Equivalent to what would otherwise be transform_fn(pretransformed_input).shape. Default value: 'None' (i.e., getattr(transform_fn, 'forward_event_shape', lambda x: x)( pretransformed_input.shape)).
name Python str representing this object's name; used only in graph mode. Default value: None (i.e., (getattr(transform_fn, 'name', None) or transform_fn.__name__ + '_' + pretransformed_input.name)).

TypeError if transform_fn is not callable.
TypeError if pretransformed_input lacks dtype and/or shape properties (and dtype and/or shape arguments are unspecified).

dtype Represents the type of the elements in a Tensor.
name The string name of this object.
name_scope Returns a tf.name_scope instance for this class.
pretransformed_input Input to transform_fn.
shape Represents the shape of a Tensor.
submodules Sequence of all sub-modules.

Submodules are modules which are properties of this module, or found as properties of modules which are properties of this module (and so on).

a = tf.Module()
b = tf.Module()
c = tf.Module()
a.b = b
b.c = c
list(a.submodules) == [b, c]
True
list(b.submodules) == [c]
True
list(c.submodules) == []
True

trainable_variables Sequence of trainable variables owned by this module and its submodules.

transform_fn Function which characterizes the Tensorization of this object.
variables Sequence of variables owned by this module and its submodules.

Methods

get_shape

View source

Legacy means of getting Tensor shape, for compat with 2.0.0 LinOp.

numpy

View source

Returns (copy of) deferred values as a NumPy array or scalar.

set_shape

View source

Updates the shape of this pretransformed_input.

This method can be called multiple times, and will merge the given shape with the current shape of this object. It can be used to provide additional information about the shape of this object that cannot be inferred from the graph alone.

Args
shape A TensorShape representing the shape of this pretransformed_input, a TensorShapeProto, a list, a tuple, or None.

Raises
ValueError If shape is not compatible with the current shape of this pretransformed_input.

with_name_scope

Decorator to automatically enter the module name scope.

class MyModule(tf.Module):
  @tf.Module.with_name_scope
  def __call__(self, x):
    if not hasattr(self, 'w'):
      self.w = tf.Variable(tf.random.normal([x.shape[1], 3]))
    return tf.matmul(x, self.w)

Using the above module would produce tf.Variables and tf.Tensors whose names included the module name:

mod = MyModule()
mod(tf.ones([1, 2]))
<tf.Tensor: shape=(1, 3), dtype=float32, numpy=..., dtype=float32)>
mod.w
<tf.Variable 'my_module/Variable:0' shape=(2, 3) dtype=float32,
numpy=..., dtype=float32)>

Args
method The method to wrap.

Returns
The original method wrapped such that it enters the module's name scope.

__abs__

Computes the absolute value of a tensor.

Given a tensor of integer or floating-point values, this operation returns a tensor of the same type, where each element contains the absolute value of the corresponding element in the input.

Given a tensor x of complex numbers, this operation returns a tensor of type float32 or float64 that is the absolute value of each element in x. For a complex number \(a + bj\), its absolute value is computed as \(\sqrt{a^2

  • b^2}\). For example:
x = tf.constant([[-2.25 + 4.75j], [-3.25 + 5.75j]])
tf.abs(x)
<tf.Tensor: shape=(2, 1), dtype=float64, numpy=
array([[5.25594901],
       [6.60492241]])>

Args
x A Tensor or SparseTensor of type float16, float32, float64, int32, int64, complex64 or complex128.
name A name for the operation (optional).

Returns
A Tensor or SparseTensor of the same size, type and sparsity as x, with absolute values. Note, for complex64 or complex128 input, the returned Tensor will be of type float32 or float64, respectively.

If x is a SparseTensor, returns SparseTensor(x.indices, tf.math.abs(x.values, ...), x.dense_shape)

__add__

Dispatches to add for strings and add_v2 for all other types.

__and__

Returns the truth value of x AND y element-wise.

Args
x A Tensor of type bool.
y A Tensor of type bool.
name A name for the operation (optional).

Returns
A Tensor of type bool.

__bool__

Dummy method to prevent a tensor from being used as a Python bool.

This overload raises a TypeError when the user inadvertently treats a Tensor as a boolean (most commonly in an if or while statement), in code that was not converted by AutoGraph. For example:

if tf.constant(True):  # Will raise.
  # ...

if tf.constant(5) < tf.constant(7):  # Will raise.
  # ...

Raises
TypeError.

__div__

Divide two values using Python 2 semantics.

Used for Tensor.div.

Args
x Tensor numerator of real numeric type.
y Tensor denominator of real numeric type.
name A name for the operation (optional).

Returns
x / y returns the quotient of x and y.

__floordiv__

Divides x / y elementwise, rounding toward the most negative integer.

The same as tf.compat.v1.div(x,y) for integers, but uses tf.floor(tf.compat.v1.div(x,y)) for floating point arguments so that the result is always an integer (though possibly an integer represented as floating point). This op is generated by x // y floor division in Python 3 and in Python 2.7 with from __future__ import division.

x and y must have the same type, and the result will have the same type as well.

Args
x Tensor numerator of real numeric type.
y Tensor denominator of real numeric type.
name A name for the operation (optional).

Returns
x / y rounded down.

Raises
TypeError If the inputs are complex.

__ge__

Returns the truth value of (x >= y) element-wise.

Example:

x = tf.constant([5, 4, 6, 7])
y = tf.constant([5, 2, 5, 10])
tf.math.greater_equal(x, y) ==> [True, True, True, False]

x = tf.constant([5, 4, 6, 7])
y = tf.constant([5])
tf.math.greater_equal(x, y) ==> [True, False, True, True]

Args
x A Tensor. Must be one of the following types: float32, float64, int32, uint8, int16, int8, int64, bfloat16, uint16, half, uint32, uint64.
y A Tensor. Must have the same type as x.
name A name for the operation (optional).

Returns
A Tensor of type bool.

__getitem__

Overload for Tensor.getitem.

This operation extracts the specified region from the tensor. The notation is similar to NumPy with the restriction that currently only support basic indexing. That means that using a non-scalar tensor as input is not currently allowed.

Some useful examples:

# Strip leading and trailing 2 elements
foo = tf.constant([1,2,3,4,5,6])
print(foo[2:-2].eval())  # => [3,4]

# Skip every other row and reverse the order of the columns
foo = tf.constant([[1,2,3], [4,5,6], [7,8,9]])
print(foo[::2,::-1].eval())  # => [[3,2,1], [9,8,7]]

# Use scalar tensors as indices on both dimensions
print(foo[tf.constant(0), tf.constant(2)].eval())  # => 3

# Insert another dimension
foo = tf.constant([[1,2,3], [4,5,6], [7,8,9]])
print(foo[tf.newaxis, :, :].eval()) # => [[[1,2,3], [4,5,6], [7,8,9]]]
print(foo[:, tf.newaxis, :].eval()) # => [[[1,2,3]], [[4,5,6]], [[7,8,9]]]
print(foo[:, :, tf.newaxis].eval()) # => [[[1],[2],[3]], [[4],[5],[6]],
[[7],[8],[9]]]

# Ellipses (3 equivalent operations)
foo = tf.constant([[1,2,3], [4,5,6], [7,8,9]])
print(foo[tf.newaxis, :, :].eval())  # => [[[1,2,3], [4,5,6], [7,8,9]]]
print(foo[tf.newaxis, ...].eval())  # => [[[1,2,3], [4,5,6], [7,8,9]]]
print(foo[tf.newaxis].eval())  # => [[[1,2,3], [4,5,6], [7,8,9]]]

# Masks
foo = tf.constant([[1,2,3], [4,5,6], [7,8,9]])
print(foo[foo > 2].eval())  # => [3, 4, 5, 6, 7, 8, 9]

Notes:

  • tf.newaxis is None as in NumPy.
  • An implicit ellipsis is placed at the end of the slice_spec
  • NumPy advanced indexing is currently not supported.

Args
tensor An ops.Tensor object.
slice_spec The arguments to Tensor.getitem.
var In the case of variable slice assignment, the Variable object to slice (i.e. tensor is the read-only view of this variable).

Returns
The appropriate slice of "tensor", based on "slice_spec".

Raises
ValueError If a slice range is negative size.
TypeError If the slice indices aren't int, slice, ellipsis, tf.newaxis or scalar int32/int64 tensors.

__gt__

Returns the truth value of (x > y) element-wise.

Example:

x = tf.constant([5, 4, 6])
y = tf.constant([5, 2, 5])
tf.math.greater(x, y) ==> [False, True, True]

x = tf.constant([5, 4, 6])
y = tf.constant([5])
tf.math.greater(x, y) ==> [False, False, True]

Args
x A Tensor. Must be one of the following types: float32, float64, int32, uint8, int16, int8, int64, bfloat16, uint16, half, uint32, uint64.
y A Tensor. Must have the same type as x.
name A name for the operation (optional).

Returns
A Tensor of type bool.

__invert__

Returns the truth value of NOT x element-wise.

Example:

tf.math.logical_not(tf.constant([True, False]))
<tf.Tensor: shape=(2,), dtype=bool, numpy=array([False,  True])>

Args
x A Tensor of type bool. A Tensor of type bool.
name A name for the operation (optional).

Returns
A Tensor of type bool.

__iter__

__le__

Returns the truth value of (x <= y) element-wise.

Example:

x = tf.constant([5, 4, 6])
y = tf.constant([5])
tf.math.less_equal(x, y) ==> [True, True, False]

x = tf.constant([5, 4, 6])
y = tf.constant([5, 6, 6])
tf.math.less_equal(x, y) ==> [True, True, True]

Args
x A Tensor. Must be one of the following types: float32, float64, int32, uint8, int16, int8, int64, bfloat16, uint16, half, uint32, uint64.
y A Tensor. Must have the same type as x.
name A name for the operation (optional).

Returns
A Tensor of type bool.

__lt__

Returns the truth value of (x < y) element-wise.

Example:

x = tf.constant([5, 4, 6])
y = tf.constant([5])
tf.math.less(x, y) ==> [False, True, False]

x = tf.constant([5, 4, 6])
y = tf.constant([5, 6, 7])
tf.math.less(x, y) ==> [False, True, True]

Args
x A Tensor. Must be one of the following types: float32, float64, int32, uint8, int16, int8, int64, bfloat16, uint16, half, uint32, uint64.
y A Tensor. Must have the same type as x.
name A name for the operation (optional).

Returns
A Tensor of type bool.

__matmul__

Multiplies matrix a by matrix b, producing a * b.

The inputs must, following any transpositions, be tensors of rank >= 2 where the inner 2 dimensions specify valid matrix multiplication dimensions, and any further outer dimensions specify matching batch size.

Both matrices must be of the same type. The supported types are: float16, float32, float64, int32, complex64, complex128.

Either matrix can be transposed or adjointed (conjugated and transposed) on the fly by setting one of the corresponding flag to True. These are False by default.

If one or both of the matrices contain a lot of zeros, a more efficient multiplication algorithm can be used by setting the corresponding a_is_sparse or b_is_sparse flag to True. These are False by default. This optimization is only available for plain matrices (rank-2 tensors) with datatypes bfloat16 or float32.

A simple 2-D tensor matrix multiplication:

a = tf.constant([1, 2, 3, 4, 5, 6], shape=[2, 3])
a  # 2-D tensor
<tf.Tensor: shape=(2, 3), dtype=int32, numpy=
array([[1, 2, 3],
       [4, 5, 6]], dtype=int32)>
b = tf.constant([7, 8, 9, 10, 11, 12], shape=[3, 2])
b  # 2-D tensor
<tf.Tensor: shape=(3, 2), dtype=int32, numpy=
array([[ 7,  8],
       [ 9, 10],
       [11, 12]], dtype=int32)>
c = tf.matmul(a, b)
c  # `a` * `b`
<tf.Tensor: shape=(2, 2), dtype=int32, numpy=
array([[ 58,  64],
       [139, 154]], dtype=int32)>

A batch matrix multiplication with batch shape [2]:

a = tf.constant(np.arange(1, 13, dtype=np.int32), shape=[2, 2, 3])
a  # 3-D tensor
<tf.Tensor: shape=(2, 2, 3), dtype=int32, numpy=
array([[[ 1,  2,  3],
        [ 4,  5,  6]],
       [[ 7,  8,  9],
        [10, 11, 12]]], dtype=int32)>
b = tf.constant(np.arange(13, 25, dtype=np.int32), shape=[2, 3, 2])
b  # 3-D tensor
<tf.Tensor: shape=(2, 3, 2), dtype=int32, numpy=
array([[[13, 14],
        [15, 16],
        [17, 18]],
       [[19, 20],
        [21, 22],
        [23, 24]]], dtype=int32)>
c = tf.matmul(a, b)
c  # `a` * `b`
<tf.Tensor: shape=(2, 2, 2), dtype=int32, numpy=
array([[[ 94, 100],
        [229, 244]],
       [[508, 532],
        [697, 730]]], dtype=int32)>

Since python >= 3.5 the @ operator is supported (see PEP 465). In TensorFlow, it simply calls the tf.matmul() function, so the following lines are equivalent:

d = a @ b @ [[10], [11]]
d = tf.matmul(tf.matmul(a, b), [[10], [11]])

Args
a tf.Tensor of type float16, float32, float64, int32, complex64, complex128 and rank > 1.
b tf.Tensor with same type and rank as a.
transpose_a If True, a is transposed before multiplication.
transpose_b If True, b is transposed before multiplication.
adjoint_a If True, a is conjugated and transposed before multiplication.
adjoint_b If True, b is conjugated and transposed before multiplication.
a_is_sparse If True, a is treated as a sparse matrix. Notice, this does not support tf.sparse.SparseTensor, it just makes optimizations that assume most values in a are zero. See tf.sparse.sparse_dense_matmul for some support for tf.SparseTensor multiplication.
b_is_sparse If True, b is treated as a sparse matrix. Notice, this does not support tf.sparse.SparseTensor, it just makes optimizations that assume most values in a are zero. See tf.sparse.sparse_dense_matmul for some support for tf.SparseTensor multiplication.
name Name for the operation (optional).

Returns
A tf.Tensor of the same type as a and b where each inner-most matrix is the product of the corresponding matrices in a and b, e.g. if all transpose or adjoint attributes are False:

output[..., i, j] = sum_k (a[..., i, k] * b[..., k, j]), for all indices i, j.

Note This is matrix product, not element-wise product.

Raises
ValueError If transpose_a and adjoint_a, or transpose_b and adjoint_b are both set to True.

__mod__

Returns element-wise remainder of division. When x < 0 xor y < 0 is

true, this follows Python semantics in that the result here is consistent with a flooring divide. E.g. floor(x / y) * y + mod(x, y) = x.

Args
x A Tensor. Must be one of the following types: int32, int64, bfloat16, half, float32, float64.
y A Tensor. Must have the same type as x.
name A name for the operation (optional).

Returns
A Tensor. Has the same type as x.

__mul__

Dispatches cwise mul for "DenseDense" and "DenseSparse".

__neg__

Computes numerical negative value element-wise.

I.e., \(y = -x\).

Args
x A Tensor. Must be one of the following types: bfloat16, half, float32, float64, int32, int64, complex64, complex128.
name A name for the operation (optional).

Returns
A Tensor. Has the same type as x.

If x is a SparseTensor, returns SparseTensor(x.indices, tf.math.negative(x.values, ...), x.dense_shape)

__nonzero__

Dummy method to prevent a tensor from being used as a Python bool.

This is the Python 2.x counterpart to __bool__() above.

Raises
TypeError.

__or__

Returns the truth value of x OR y element-wise.

Args
x A Tensor of type bool.
y A Tensor of type bool.
name A name for the operation (optional).

Returns
A Tensor of type bool.

__pow__

Computes the power of one value to another.

Given a tensor x and a tensor y, this operation computes \(x^y\) for corresponding elements in x and y. For example:

x = tf.constant([[2, 2], [3, 3]])
y = tf.constant([[8, 16], [2, 3]])
tf.pow(x, y)  # [[256, 65536], [9, 27]]

Args
x A Tensor of type float16, float32, float64, int32, int64, complex64, or complex128.
y A Tensor of type float16, float32, float64, int32, int64, complex64, or complex128.
name A name for the operation (optional).

Returns
A Tensor.

__radd__

Dispatches to add for strings and add_v2 for all other types.

__rand__

Returns the truth value of x AND y element-wise.

Args
x A Tensor of type bool.
y A Tensor of type bool.
name A name for the operation (optional).

Returns
A Tensor of type bool.

__rdiv__

Divide two values using Python 2 semantics.

Used for Tensor.div.

Args
x Tensor numerator of real numeric type.
y Tensor denominator of real numeric type.
name A name for the operation (optional).

Returns
x / y returns the quotient of x and y.

__rfloordiv__

Divides x / y elementwise, rounding toward the most negative integer.

The same as tf.compat.v1.div(x,y) for integers, but uses tf.floor(tf.compat.v1.div(x,y)) for floating point arguments so that the result is always an integer (though possibly an integer represented as floating point). This op is generated by x // y floor division in Python 3 and in Python 2.7 with from __future__ import division.

x and y must have the same type, and the result will have the same type as well.

Args
x Tensor numerator of real numeric type.
y Tensor denominator of real numeric type.
name A name for the operation (optional).

Returns
x / y rounded down.

Raises
TypeError If the inputs are complex.

__rmatmul__

Multiplies matrix a by matrix b, producing a * b.

The inputs must, following any transpositions, be tensors of rank >= 2 where the inner 2 dimensions specify valid matrix multiplication dimensions, and any further outer dimensions specify matching batch size.

Both matrices must be of the same type. The supported types are: float16, float32, float64, int32, complex64, complex128.

Either matrix can be transposed or adjointed (conjugated and transposed) on the fly by setting one of the corresponding flag to True. These are False by default.

If one or both of the matrices contain a lot of zeros, a more efficient multiplication algorithm can be used by setting the corresponding a_is_sparse or b_is_sparse flag to True. These are False by default. This optimization is only available for plain matrices (rank-2 tensors) with datatypes bfloat16 or float32.

A simple 2-D tensor matrix multiplication:

a = tf.constant([1, 2, 3, 4, 5, 6], shape=[2, 3])
a  # 2-D tensor
<tf.Tensor: shape=(2, 3), dtype=int32, numpy=
array([[1, 2, 3],
       [4, 5, 6]], dtype=int32)>
b = tf.constant([7, 8, 9, 10, 11, 12], shape=[3, 2])
b  # 2-D tensor
<tf.Tensor: shape=(3, 2), dtype=int32, numpy=
array([[ 7,  8],
       [ 9, 10],
       [11, 12]], dtype=int32)>
c = tf.matmul(a, b)
c  # `a` * `b`
<tf.Tensor: shape=(2, 2), dtype=int32, numpy=
array([[ 58,  64],
       [139, 154]], dtype=int32)>

A batch matrix multiplication with batch shape [2]:

a = tf.constant(np.arange(1, 13, dtype=np.int32), shape=[2, 2, 3])
a  # 3-D tensor
<tf.Tensor: shape=(2, 2, 3), dtype=int32, numpy=
array([[[ 1,  2,  3],
        [ 4,  5,  6]],
       [[ 7,  8,  9],
        [10, 11, 12]]], dtype=int32)>
b = tf.constant(np.arange(13, 25, dtype=np.int32), shape=[2, 3, 2])
b  # 3-D tensor
<tf.Tensor: shape=(2, 3, 2), dtype=int32, numpy=
array([[[13, 14],
        [15, 16],
        [17, 18]],
       [[19, 20],
        [21, 22],
        [23, 24]]], dtype=int32)>
c = tf.matmul(a, b)
c  # `a` * `b`
<tf.Tensor: shape=(2, 2, 2), dtype=int32, numpy=
array([[[ 94, 100],
        [229, 244]],
       [[508, 532],
        [697, 730]]], dtype=int32)>

Since python >= 3.5 the @ operator is supported (see PEP 465). In TensorFlow, it simply calls the tf.matmul() function, so the following lines are equivalent:

d = a @ b @ [[10], [11]]
d = tf.matmul(tf.matmul(a, b), [[10], [11]])

Args
a tf.Tensor of type float16, float32, float64, int32, complex64, complex128 and rank > 1.
b tf.Tensor with same type and rank as a.
transpose_a If True, a is transposed before multiplication.
transpose_b If True, b is transposed before multiplication.
adjoint_a If True, a is conjugated and transposed before multiplication.
adjoint_b If True, b is conjugated and transposed before multiplication.
a_is_sparse If True, a is treated as a sparse matrix. Notice, this does not support tf.sparse.SparseTensor, it just makes optimizations that assume most values in a are zero. See tf.sparse.sparse_dense_matmul for some support for tf.SparseTensor multiplication.
b_is_sparse If True, b is treated as a sparse matrix. Notice, this does not support tf.sparse.SparseTensor, it just makes optimizations that assume most values in a are zero. See tf.sparse.sparse_dense_matmul for some support for tf.SparseTensor multiplication.
name Name for the operation (optional).

Returns
A tf.Tensor of the same type as a and b where each inner-most matrix is the product of the corresponding matrices in a and b, e.g. if all transpose or adjoint attributes are False:

output[..., i, j] = sum_k (a[..., i, k] * b[..., k, j]), for all indices i, j.

Note This is matrix product, not element-wise product.

Raises
ValueError If transpose_a and adjoint_a, or transpose_b and adjoint_b are both set to True.

__rmod__

Returns element-wise remainder of division. When x < 0 xor y < 0 is

true, this follows Python semantics in that the result here is consistent with a flooring divide. E.g. floor(x / y) * y + mod(x, y) = x.

Args
x A Tensor. Must be one of the following types: int32, int64, bfloat16, half, float32, float64.
y A Tensor. Must have the same type as x.
name A name for the operation (optional).

Returns
A Tensor. Has the same type as x.

__rmul__

Dispatches cwise mul for "DenseDense" and "DenseSparse".

__ror__

Returns the truth value of x OR y element-wise.

Args
x A Tensor of type bool.
y A Tensor of type bool.
name A name for the operation (optional).

Returns
A Tensor of type bool.

__rpow__

Computes the power of one value to another.

Given a tensor x and a tensor y, this operation computes \(x^y\) for corresponding elements in x and y. For example:

x = tf.constant([[2, 2], [3, 3]])
y = tf.constant([[8, 16], [2, 3]])
tf.pow(x, y)  # [[256, 65536], [9, 27]]

Args
x A Tensor of type float16, float32, float64, int32, int64, complex64, or complex128.
y A Tensor of type float16, float32, float64, int32, int64, complex64, or complex128.
name A name for the operation (optional).

Returns
A Tensor.

__rsub__

Returns x - y element-wise.

Args
x A Tensor. Must be one of the following types: bfloat16, half, float32, float64, uint8, int8, uint16, int16, int32, int64, complex64, complex128.
y A Tensor. Must have the same type as x.
name A name for the operation (optional).

Returns
A Tensor. Has the same type as x.

__rtruediv__

__rxor__

Logical XOR function.

x ^ y = (x | y) & ~(x & y)

The operation works for the following input types:

  • Two single elements of type bool
  • One tf.Tensor of type bool and one single bool, where the result will be calculated by applying logical XOR with the single element to each element in the larger Tensor.
  • Two tf.Tensor objects of type bool of the same shape. In this case, the result will be the element-wise logical XOR of the two input tensors.

Usage:

a = tf.constant([True])
b = tf.constant([False])
tf.math.logical_xor(a, b)
<tf.Tensor: shape=(1,), dtype=bool, numpy=array([ True])>
c = tf.constant([True])
x = tf.constant([False, True, True, False])
tf.math.logical_xor(c, x)
<tf.Tensor: shape=(4,), dtype=bool, numpy=array([ True, False, False,  True])>
y = tf.constant([False, False, True, True])
z = tf.constant([False, True, False, True])
tf.math.logical_xor(y, z)
<tf.Tensor: shape=(4,), dtype=bool, numpy=array([False,  True,  True, False])>

Args
x A tf.Tensor type bool.
y A tf.Tensor of type bool.
name A name for the operation (optional).

Returns
A tf.Tensor of type bool with the same size as that of x or y.

__sub__

Returns x - y element-wise.

Args
x A Tensor. Must be one of the following types: bfloat16, half, float32, float64, uint8, int8, uint16, int16, int32, int64, complex64, complex128.
y A Tensor. Must have the same type as x.
name A name for the operation (optional).

Returns
A Tensor. Has the same type as x.

__truediv__

__xor__

Logical XOR function.

x ^ y = (x | y) & ~(x & y)

The operation works for the following input types:

  • Two single elements of type bool
  • One tf.Tensor of type bool and one single bool, where the result will be calculated by applying logical XOR with the single element to each element in the larger Tensor.
  • Two tf.Tensor objects of type bool of the same shape. In this case, the result will be the element-wise logical XOR of the two input tensors.

Usage:

a = tf.constant([True])
b = tf.constant([False])
tf.math.logical_xor(a, b)
<tf.Tensor: shape=(1,), dtype=bool, numpy=array([ True])>
c = tf.constant([True])
x = tf.constant([False, True, True, False])
tf.math.logical_xor(c, x)
<tf.Tensor: shape=(4,), dtype=bool, numpy=array([ True, False, False,  True])>
y = tf.constant([False, False, True, True])
z = tf.constant([False, True, False, True])
tf.math.logical_xor(y, z)
<tf.Tensor: shape=(4,), dtype=bool, numpy=array([False,  True,  True, False])>

Args
x A tf.Tensor type bool.
y A tf.Tensor of type bool.
name A name for the operation (optional).

Returns
A tf.Tensor of type bool with the same size as that of x or y.