tfp.sts.SemiLocalLinearTrendStateSpaceModel

View source on GitHub

State space model for a semi-local linear trend.

Inherits From: LinearGaussianStateSpaceModel

A state space model (SSM) posits a set of latent (unobserved) variables that evolve over time with dynamics specified by a probabilistic transition model p(z[t+1] | z[t]). At each timestep, we observe a value sampled from an observation model conditioned on the current state, p(x[t] | z[t]). The special case where both the transition and observation models are Gaussians with mean specified as a linear function of the inputs, is known as a linear Gaussian state space model and supports tractable exact probabilistic calculations; see tfp.distributions.LinearGaussianStateSpaceModel for details.

The semi-local linear trend model is a special case of a linear Gaussian SSM, in which the latent state posits a level and slope. The level evolves via a Gaussian random walk centered at the current slope, while the slope follows a first-order autoregressive (AR1) process with mean slope_mean:

level[t] = level[t-1] + slope[t-1] + Normal(0., level_scale)
slope[t] = (slope_mean +
            autoregressive_coef * (slope[t-1] - slope_mean) +
            Normal(0., slope_scale))

The latent state is the two-dimensional tuple [level, slope]. The level is observed at each timestep.

The parameters level_scale, slope_mean, slope_scale, autoregressive_coef, and observation_noise_scale are each (a batch of) scalars. The batch shape of this Distribution is the broadcast batch shape of these parameters and of the initial_state_prior.

Mathematical Details

The semi-local linear trend model implements a tfp.distributions.LinearGaussianStateSpaceModel with latent_size = 2 and observation_size = 1, following the transition model:

transition_matrix = [[1., 1.]
                     [0., autoregressive_coef]]
transition_noise ~ N(loc=slope_mean - autoregressive_coef * slope_mean,
                     scale=diag([level_scale, slope_scale]))

which implements the evolution of [level, slope] described above, and the observation model:

observation_matrix = [[1., 0.]]
observation_noise ~ N(loc=0, scale=observation_noise_scale)

which picks out the first latent component, i.e., the level, as the observation at each timestep.

Examples

A simple model definition:

semilocal_trend_model = SemiLocalLinearTrendStateSpaceModel(
    num_timesteps=50,
    level_scale=0.5,
    slope_mean=0.2,
    slope_scale=0.5,
    autoregressive_coef=0.9,
    initial_state_prior=tfd.MultivariateNormalDiag(scale_diag=[1., 1.]))

y = semilocal_trend_model.sample() # y has shape [50, 1]
lp = semilocal_trend_model.log_prob(y) # log_prob is scalar

Passing additional parameter dimensions constructs a batch of models. The overall batch shape is the broadcast batch shape of the parameters:

semilocal_trend_model = SemiLocalLinearTrendStateSpaceModel(
    num_timesteps=50,
    level_scale=tf.ones([10]),
    slope_mean=0.2,
    slope_scale=0.5,
    autoregressive_coef=0.9,
    initial_state_prior=tfd.MultivariateNormalDiag(
      scale_diag=tf.ones([10, 10, 2])))

y = semilocal_trend_model.sample(5)    # y has shape [5, 10, 10, 50, 1]
lp = semilocal_trend_model.log_prob(y) # lp has shape [5, 10, 10]

num_timesteps Scalar int Tensor number of timesteps to model with this distribution.
level_scale Scalar (any additional dimensions are treated as batch dimensions) float Tensor indicating the standard deviation of the level transitions.
slope_mean Scalar (any additional dimensions are treated as batch dimensions) float Tensor indicating the expected long-term mean of the latent slope.
slope_scale Scalar (any additional dimensions are treated as batch dimensions) float Tensor indicating the standard deviation of the slope transitions.
autoregressive_coef Scalar (any additional dimensions are treated as batch dimensions) float Tensor defining the AR1 process on the latent slope.
initial_state_prior instance of tfd.MultivariateNormal representing the prior distribution on latent states; must have event shape [2].
observation_noise_scale Scalar (any additional dimensions are treated as batch dimensions) float Tensor indicating the standard deviation of the observation noise.
initial_step Optional scalar int Tensor specifying the starting timestep. Default value: 0.
validate_args Python bool. Whether to validate input with asserts. If validate_args is False, and the inputs are invalid, correct behavior is not guaranteed. Default value: False.
allow_nan_stats Python bool. If False, raise an exception if a statistic (e.g. mean/mode/etc...) is undefined for any batch member. If True, batch members with valid parameters leading to undefined statistics will return NaN for this statistic. Default value: True.
name Python str name prefixed to ops created by this class. Default value: "SemiLocalLinearTrendStateSpaceModel".

allow_nan_stats Python bool describing behavior when a stat is undefined.

Stats return +/- infinity when it makes sense. E.g., the variance of a Cauchy distribution is infinity. However, sometimes the statistic is undefined, e.g., if a distribution's pdf does not achieve a maximum within the support of the distribution, the mode is undefined. If the mean is undefined, then by definition the variance is undefined. E.g. the mean for Student's T for df = 1 is undefined (no clear way to say it is either + or - infinity), so the variance = E[(X - mean)**2] is also undefined.

autoregressive_coef

batch_shape Shape of a single sample from a single event index as a TensorShape.

May be partially defined or unknown.

The batch dimensions are indexes into independent, non-identical parameterizations of this distribution.

dtype The DType of Tensors handled by this Distribution.
event_shape Shape of a single sample from a single batch as a TensorShape.

May be partially defined or unknown.

final_step DEPRECATED FUNCTION

initial_step

latent_size DEPRECATED FUNCTION

level_scale

name Name prepended to all ops created by this Distribution.
name_scope Returns a tf.name_scope instance for this class.
num_timesteps

observation_matrix

observation_noise

observation_noise_scale

observation_size

parameters Dictionary of parameters used to instantiate this Distribution.
reparameterization_type Describes how samples from the distribution are reparameterized.

Currently this is one of the static instances tfd.FULLY_REPARAMETERIZED or tfd.NOT_REPARAMETERIZED.

slope_mean

slope_scale

submodules Sequence of all sub-modules.

Submodules are modules which are properties of this module, or found as properties of modules which are properties of this module (and so on).

a = tf.Module()
b = tf.Module()
c = tf.Module()
a.b = b
b.c = c
list(a.submodules) == [b, c]
True
list(b.submodules) == [c]
True
list(c.submodules) == []
True

trainable_variables Sequence of trainable variables owned by this module and its submodules.

transition_matrix

transition_noise

validate_args Python bool indicating possibly expensive checks are enabled.
variables Sequence of variables owned by this module and its submodules.

Methods

backward_smoothing_pass

View source

Run the backward pass in Kalman smoother.

The backward smoothing is using Rauch, Tung and Striebel smoother as as discussed in section 18.3.2 of Kevin P. Murphy, 2012, Machine Learning: A Probabilistic Perspective, The MIT Press. The inputs are returned by forward_filter function.

Args
filtered_means Means of the per-timestep filtered marginal distributions p(z[t] | x[:t]), as a Tensor of shape sample_shape(x) + batch_shape + [num_timesteps, latent_size].
filtered_covs Covariances of the per-timestep filtered marginal distributions p(z[t] | x[:t]), as a Tensor of shape batch_shape + [num_timesteps, latent_size, latent_size].
predicted_means Means of the per-timestep predictive distributions over latent states, p(z[t+1] | x[:t]), as a Tensor of shape sample_shape(x) + batch_shape + [num_timesteps, latent_size].
predicted_covs Covariances of the per-timestep predictive distributions over latent states, p(z[t+1] | x[:t]), as a Tensor of shape batch_shape + [num_timesteps, latent_size, latent_size].

Returns
posterior_means Means of the smoothed marginal distributions p(z[t] | x[1:T]), as a Tensor of shape sample_shape(x) + batch_shape + [num_timesteps, latent_size], which is of the same shape as filtered_means.
posterior_covs Covariances of the smoothed marginal distributions p(z[t] | x[1:T]), as a Tensor of shape batch_shape + [num_timesteps, latent_size, latent_size]. which is of the same shape as filtered_covs.

batch_shape_tensor

View source

Shape of a single sample from a single event index as a 1-D Tensor.

The batch dimensions are indexes into independent, non-identical parameterizations of this distribution.

Args
name name to give to the op

Returns
batch_shape Tensor.

cdf

View source

Cumulative distribution function.

Given random variable X, the cumulative distribution function cdf is:

cdf(x) := P[X <= x]

Args
value float or double Tensor.
name Python str prepended to names of ops created by this function.
**kwargs Named arguments forwarded to subclass implementation.

Returns
cdf a Tensor of shape sample_shape(x) + self.batch_shape with values of type self.dtype.

copy

View source

Creates a deep copy of the distribution.

Args
**override_parameters_kwargs String/value dictionary of initialization arguments to override with new values.

Returns
distribution A new instance of type(self) initialized from the union of self.parameters and override_parameters_kwargs, i.e., dict(self.parameters, **override_parameters_kwargs).

covariance

View source

Covariance.

Covariance is (possibly) defined only for non-scalar-event distributions.

For example, for a length-k, vector-valued distribution, it is calculated as,

Cov[i, j] = Covariance(X_i, X_j) = E[(X_i - E[X_i]) (X_j - E[X_j])]

where Cov is a (batch of) k x k matrix, 0 <= (i, j) < k, and E denotes expectation.

Alternatively, for non-vector, multivariate distributions (e.g., matrix-valued, Wishart), Covariance shall return a (batch of) matrices under some vectorization of the events, i.e.,

Cov[i, j] = Covariance(Vec(X)_i, Vec(X)_j) = [as above]

where Cov is a (batch of) k' x k' matrices, 0 <= (i, j) < k' = reduce_prod(event_shape), and Vec is some function mapping indices of this distribution's event dimensions to indices of a length-k' vector.

Args
name Python str prepended to names of ops created by this function.
**kwargs Named arguments forwarded to subclass implementation.

Returns
covariance Floating-point Tensor with shape [B1, ..., Bn, k', k'] where the first n dimensions are batch coordinates and k' = reduce_prod(self.event_shape).

cross_entropy

View source

Computes the (Shannon) cross entropy.

Denote this distribution (self) by P and the other distribution by Q. Assuming P, Q are absolutely continuous with respect to one another and permit densities p(x) dr(x) and q(x) dr(x), (Shannon) cross entropy is defined as:

H[P, Q] = E_p[-log q(X)] = -int_F p(x) log q(x) dr(x)

where F denotes the support of the random variable X ~ P.

Args
other tfp.distributions.Distribution instance.
name Python str prepended to names of ops created by this function.

Returns
cross_entropy self.dtype Tensor with shape [B1, ..., Bn] representing n different calculations of (Shannon) cross entropy.

entropy

View source

Shannon entropy in nats.

event_shape_tensor

View source

Shape of a single sample from a single batch as a 1-D int32 Tensor.

Args
name name to give to the op

Returns
event_shape Tensor.

forward_filter

View source

Run a Kalman filter over a provided sequence of outputs.

Note that the returned values filtered_means, predicted_means, and observation_means depend on the observed time series x, while the corresponding covariances are independent of the observed series; i.e., they depend only on the model itself. This means that the mean values have shape concat([sample_shape(x), batch_shape, [num_timesteps, {latent/observation}_size]]), while the covariances have shape concat[(batch_shape, [num_timesteps, {latent/observation}_size, {latent/observation}_size]]), which does not depend on the sample shape.

Args
x a float-type Tensor with rightmost dimensions [num_timesteps, observation_size] matching self.event_shape. Additional dimensions must match or be broadcastable to self.batch_shape; any further dimensions are interpreted as a sample shape.
mask optional bool-type Tensor with rightmost dimension [num_timesteps]; True values specify that the value of x at that timestep is masked, i.e., not conditioned on. Additional dimensions must match or be broadcastable to self.batch_shape; any further dimensions must match or be broadcastable to the sample shape of x. Default value: None.

Returns
log_likelihoods Per-timestep log marginal likelihoods log p(x[t] | x[:t-1]) evaluated at the input x, as a Tensor of shape sample_shape(x) + batch_shape + [num_timesteps].
filtered_means Means of the per-timestep filtered marginal distributions p(z[t] | x[:t]), as a Tensor of shape sample_shape(x) + batch_shape + [num_timesteps, latent_size].
filtered_covs Covariances of the per-timestep filtered marginal distributions p(z[t] | x[:t]), as a Tensor of shape sample_shape(mask) + batch_shape + [num_timesteps, latent_size, latent_size]. Note that the covariances depend only on the model and the mask, not on the data, so this may have fewer dimensions than filtered_means.
predicted_means Means of the per-timestep predictive distributions over latent states, p(z[t+1] | x[:t]), as a Tensor of shape sample_shape(x) + batch_shape + [num_timesteps, latent_size].
predicted_covs Covariances of the per-timestep predictive distributions over latent states, p(z[t+1] | x[:t]), as a Tensor of shape sample_shape(mask) + batch_shape + [num_timesteps, latent_size, latent_size]. Note that the covariances depend only on the model and the mask, not on the data, so this may have fewer dimensions than predicted_means.
observation_means Means of the per-timestep predictive distributions over observations, p(x[t] | x[:t-1]), as a Tensor of shape sample_shape(x) + batch_shape + [num_timesteps, observation_size].
observation_covs Covariances of the per-timestep predictive distributions over observations, p(x[t] | x[:t-1]), as a Tensor of shape sample_shape(mask) + batch_shape + [num_timesteps, observation_size, observation_size]. Note that the covariances depend only on the model and the mask, not on the data, so this may have fewer dimensions than observation_means.

is_scalar_batch

View source

Indicates that batch_shape == [].

Args
name Python str prepended to names of ops created by this function.

Returns
is_scalar_batch bool scalar Tensor.

is_scalar_event

View source

Indicates that event_shape == [].

Args
name Python str prepended to names of ops created by this function.

Returns
is_scalar_event bool scalar Tensor.

kl_divergence

View source

Computes the Kullback--Leibler divergence.

Denote this distribution (self) by p and the other distribution by q. Assuming p, q are absolutely continuous with respect to reference measure r, the KL divergence is defined as:

KL[p, q] = E_p[log(p(X)/q(X))]
         = -int_F p(x) log q(x) dr(x) + int_F p(x) log p(x) dr(x)
         = H[p, q] - H[p]

where F denotes the support of the random variable X ~ p, H[., .] denotes (Shannon) cross entropy, and H[.] denotes (Shannon) entropy.

Args
other tfp.distributions.Distribution instance.
name Python str prepended to names of ops created by this function.

Returns
kl_divergence self.dtype Tensor with shape [B1, ..., Bn] representing n different calculations of the Kullback-Leibler divergence.

latent_size_tensor

View source

latents_to_observations

View source

Push latent means and covariances forward through the observation model.

Args
latent_means float Tensor of shape [..., num_timesteps, latent_size]
latent_covs float Tensor of shape [..., num_timesteps, latent_size, latent_size].

Returns
observation_means float Tensor of shape [..., num_timesteps, observation_size]
observation_covs float Tensor of shape [..., num_timesteps, observation_size, observation_size]

log_cdf

View source

Log cumulative distribution function.

Given random variable X, the cumulative distribution function cdf is:

log_cdf(x) := Log[ P[X <= x] ]

Often, a numerical approximation can be used for log_cdf(x) that yields a more accurate answer than simply taking the logarithm of the cdf when x << -1.

Args
value float or double Tensor.
name Python str prepended to names of ops created by this function.
**kwargs Named arguments forwarded to subclass implementation.

Returns
logcdf a Tensor of shape sample_shape(x) + self.batch_shape with values of type self.dtype.

log_prob

View source

Log probability density/mass function.

Additional documentation from LinearGaussianStateSpaceModel:

kwargs:
  • mask: optional bool-type Tensor with rightmost dimension [num_timesteps]; True values specify that the value of x at that timestep is masked, i.e., not conditioned on. Additional dimensions must match or be broadcastable to self.batch_shape; any further dimensions must match or be broadcastable to the sample shape of x. Default value: None.

Args
value float or double Tensor.
name Python str prepended to names of ops created by this function.
**kwargs Named arguments forwarded to subclass implementation.

Returns
log_prob a Tensor of shape sample_shape(x) + self.batch_shape with values of type self.dtype.

log_survival_function

View source

Log survival function.

Given random variable X, the survival function is defined:

log_survival_function(x) = Log[ P[X > x] ]
                         = Log[ 1 - P[X <= x] ]
                         = Log[ 1 - cdf(x) ]

Typically, different numerical approximations can be used for the log survival function, which are more accurate than 1 - cdf(x) when x >> 1.

Args
value float or double Tensor.
name Python str prepended to names of ops created by this function.
**kwargs Named arguments forwarded to subclass implementation.

Returns
Tensor of shape sample_shape(x) + self.batch_shape with values of type self.dtype.

mean

View source

Mean.

mode

View source

Mode.

observation_size_tensor

View source

param_shapes

View source

Shapes of parameters given the desired shape of a call to sample().

This is a class method that describes what key/value arguments are required to instantiate the given Distribution so that a particular shape is returned for that instance's call to sample().

Subclasses should override class method _param_shapes.

Args
sample_shape Tensor or python list/tuple. Desired shape of a call to sample().
name name to prepend ops with.

Returns
dict of parameter name to Tensor shapes.

param_static_shapes

View source

param_shapes with static (i.e. TensorShape) shapes.

This is a class method that describes what key/value arguments are required to instantiate the given Distribution so that a particular shape is returned for that instance's call to sample(). Assumes that the sample's shape is known statically.

Subclasses should override class method _param_shapes to return constant-valued tensors when constant values are fed.

Args
sample_shape TensorShape or python list/tuple. Desired shape of a call to sample().

Returns
dict of parameter name to TensorShape.

Raises
ValueError if sample_shape is a TensorShape and is not fully defined.

posterior_marginals

View source

Run a Kalman smoother to return posterior mean and cov.

Note that the returned values smoothed_means depend on the observed time series x, while the smoothed_covs are independent of the observed series; i.e., they depend only on the model itself. This means that the mean values have shape concat([sample_shape(x), batch_shape, [num_timesteps, {latent/observation}_size]]), while the covariances have shape concat[(batch_shape, [num_timesteps, {latent/observation}_size, {latent/observation}_size]]), which does not depend on the sample shape.

This function only performs smoothing. If the user wants the intermediate values, which are returned by filtering pass forward_filter, one could get it by:

(log_likelihoods,
 filtered_means, filtered_covs,
 predicted_means, predicted_covs,
 observation_means, observation_covs) = model.forward_filter(x)
smoothed_means, smoothed_covs = model.backward_smoothing_pass(x)

where x is an observation sequence.

Args
x a float-type Tensor with rightmost dimensions [num_timesteps, observation_size] matching self.event_shape. Additional dimensions must match or be broadcastable to self.batch_shape; any further dimensions are interpreted as a sample shape.
mask optional bool-type Tensor with rightmost dimension [num_timesteps]; True values specify that the value of x at that timestep is masked, i.e., not conditioned on. Additional dimensions must match or be broadcastable to self.batch_shape; any further dimensions must match or be broadcastable to the sample shape of x. Default value: None.

Returns
smoothed_means Means of the per-timestep smoothed distributions over latent states, p(z[t] | x[:T]), as a Tensor of shape sample_shape(x) + batch_shape + [num_timesteps, observation_size].
smoothed_covs Covariances of the per-timestep smoothed distributions over latent states, p(z[t] | x[:T]), as a Tensor of shape sample_shape(mask) + batch_shape + [num_timesteps, observation_size, observation_size]. Note that the covariances depend only on the model and the mask, not on the data, so this may have fewer dimensions than filtered_means.

posterior_sample

View source

Draws samples from the posterior over latent trajectories.

This method uses Durbin-Koopman sampling [1], an efficient algorithm to sample from the posterior latents of a linear Gaussian state space model. The cost of drawing a sample is equal to the cost of drawing a prior sample (.sample(sample_shape)), plus the cost of Kalman smoothing ( .posterior_marginals(...) on both the observed time series and the prior sample. This method is significantly more efficient in graph mode, because it uses only the posterior means and can elide the unneeded calculation of marginal covariances.

[1] Durbin, J. and Koopman, S.J. A simple and efficient simulation smoother for state space time series analysis. Biometrika 89(3):603-615, 2002. https://www.jstor.org/stable/4140605

Args
x a float-type Tensor with rightmost dimensions [num_timesteps, observation_size] matching self.event_shape. Additional dimensions must match or be broadcastable with self.batch_shape.
sample_shape int Tensor shape of samples to draw.
mask optional bool-type Tensor with rightmost dimension [num_timesteps]; True values specify that the value of x at that timestep is masked, i.e., not conditioned on. Additional dimensions must match or be broadcastable with self.batch_shape and x.shape[:-2]. Default value: None.
seed Python int random seed.
name Python str name for ops generated by this method.

Returns
latent_posterior_sample Float Tensor of shape concat([sample_shape, batch_shape, [num_timesteps, latent_size]]), where batch_shape is the broadcast shape of self.batch_shape, x.shape[:-2], and mask.shape[:-1], representing n samples from the posterior over latent states given the observed value x.

prob

View source

Probability density/mass function.

Additional documentation from LinearGaussianStateSpaceModel:

kwargs:
  • mask: optional bool-type Tensor with rightmost dimension [num_timesteps]; True values specify that the value of x at that timestep is masked, i.e., not conditioned on. Additional dimensions must match or be broadcastable to self.batch_shape; any further dimensions must match or be broadcastable to the sample shape of x. Default value: None.

Args
value float or double Tensor.
name Python str prepended to names of ops created by this function.
**kwargs Named arguments forwarded to subclass implementation.

Returns
prob a Tensor of shape sample_shape(x) + self.batch_shape with values of type self.dtype.

quantile

View source

Quantile function. Aka 'inverse cdf' or 'percent point function'.

Given random variable X and p in [0, 1], the quantile is:

quantile(p) := x such that P[X <= x] == p

Args
value float or double Tensor.
name Python str prepended to names of ops created by this function.
**kwargs Named arguments forwarded to subclass implementation.

Returns
quantile a Tensor of shape sample_shape(x) + self.batch_shape with values of type self.dtype.

sample

View source

Generate samples of the specified shape.

Note that a call to sample() without arguments will generate a single sample.

Args
sample_shape 0D or 1D int32 Tensor. Shape of the generated samples.
seed Python integer or tfp.util.SeedStream instance, for seeding PRNG.
name name to give to the op.
**kwargs Named arguments forwarded to subclass implementation.

Returns
samples a Tensor with prepended dimensions sample_shape.

stddev

View source

Standard deviation.

Standard deviation is defined as,

stddev = E[(X - E[X])**2]**0.5

where X is the random variable associated with this distribution, E denotes expectation, and stddev.shape = batch_shape + event_shape.

Args
name Python str prepended to names of ops created by this function.
**kwargs Named arguments forwarded to subclass implementation.

Returns
stddev Floating-point Tensor with shape identical to batch_shape + event_shape, i.e., the same shape as self.mean().

survival_function

View source

Survival function.

Given random variable X, the survival function is defined:

survival_function(x) = P[X > x]
                     = 1 - P[X <= x]
                     = 1 - cdf(x).

Args
value float or double Tensor.
name Python str prepended to names of ops created by this function.
**kwargs Named arguments forwarded to subclass implementation.

Returns
Tensor of shape sample_shape(x) + self.batch_shape with values of type self.dtype.

variance

View source

Variance.

Variance is defined as,

Var = E[(X - E[X])**2]

where X is the random variable associated with this distribution, E denotes expectation, and Var.shape = batch_shape + event_shape.

Args
name Python str prepended to names of ops created by this function.
**kwargs Named arguments forwarded to subclass implementation.

Returns
variance Floating-point Tensor with shape identical to batch_shape + event_shape, i.e., the same shape as self.mean().

with_name_scope

Decorator to automatically enter the module name scope.

class MyModule(tf.Module):
  @tf.Module.with_name_scope
  def __call__(self, x):
    if not hasattr(self, 'w'):
      self.w = tf.Variable(tf.random.normal([x.shape[1], 3]))
    return tf.matmul(x, self.w)

Using the above module would produce tf.Variables and tf.Tensors whose names included the module name:

mod = MyModule()
mod(tf.ones([1, 2]))
<tf.Tensor: shape=(1, 3), dtype=float32, numpy=..., dtype=float32)>
mod.w
<tf.Variable 'my_module/Variable:0' shape=(2, 3) dtype=float32,
numpy=..., dtype=float32)>

Args
method The method to wrap.

Returns
The original method wrapped such that it enters the module's name scope.

__getitem__

View source

Slices the batch axes of this distribution, returning a new instance.

b = tfd.Bernoulli(logits=tf.zeros([3, 5, 7, 9]))
b.batch_shape  # => [3, 5, 7, 9]
b2 = b[:, tf.newaxis, ..., -2:, 1::2]
b2.batch_shape  # => [3, 1, 5, 2, 4]

x = tf.random.normal([5, 3, 2, 2])
cov = tf.matmul(x, x, transpose_b=True)
chol = tf.cholesky(cov)
loc = tf.random.normal([4, 1, 3, 1])
mvn = tfd.MultivariateNormalTriL(loc, chol)
mvn.batch_shape  # => [4, 5, 3]
mvn.event_shape  # => [2]
mvn2 = mvn[:, 3:, ..., ::-1, tf.newaxis]
mvn2.batch_shape  # => [4, 2, 3, 1]
mvn2.event_shape  # => [2]

Args
slices slices from the [] operator

Returns
dist A new tfd.Distribution instance with sliced parameters.

__iter__

View source