tfp.sts.SeasonalStateSpaceModel

Class SeasonalStateSpaceModel

Inherits From: LinearGaussianStateSpaceModel

State space model for a seasonal effect.

A state space model (SSM) posits a set of latent (unobserved) variables that evolve over time with dynamics specified by a probabilistic transition model p(z[t+1] | z[t]). At each timestep, we observe a value sampled from an observation model conditioned on the current state, p(x[t] | z[t]). The special case where both the transition and observation models are Gaussians with mean specified as a linear function of the inputs, is known as a linear Gaussian state space model and supports tractable exact probabilistic calculations; see tfp.distributions.LinearGaussianStateSpaceModel for details.

A seasonal effect model is a special case of a linear Gaussian SSM. The latent states represent an unknown effect from each of several 'seasons'; these are generally not meteorological seasons, but represent regular recurring patterns such as hour-of-day or day-of-week effects. The effect of each season drifts from one occurrence to the next, following a Gaussian random walk:

effects[season, occurrence[i]] = (
  effects[season, occurrence[i-1]] + Normal(loc=0., scale=drift_scale))

The latent state has dimension num_seasons, containing one effect for each seasonal component. The parameters drift_scale and observation_noise_scale are each (a batch of) scalars. The batch shape of this Distribution is the broadcast batch shape of these parameters and of the initial_state_prior.

Mathematical Details

The seasonal effect model implements a tfp.distributions.LinearGaussianStateSpaceModel with latent_size = num_seasons and observation_size = 1. The latent state is organized so that the current seasonal effect is always in the first (zeroth) dimension. The transition model rotates the latent state to shift to a new effect at the end of each season:

transition_matrix[t] = (permutation_matrix([1, 2, ..., num_seasons-1, 0])
                        if season_is_changing(t)
                        else eye(num_seasons)
transition_noise[t] ~ Normal(loc=0., scale_diag=(
                             [drift_scale, 0, ..., 0]
                             if season_is_changing(t)
                             else [0, 0, ..., 0]))

where season_is_changing(t) is True if t `mod` sum(num_steps_per_season) is in the set of final days for each season, given by cumsum(num_steps_per_season) - 1. The observation model always picks out the effect for the current season, i.e., the first element of the latent state:

observation_matrix = [[1., 0., ..., 0.]]
observation_noise ~ Normal(loc=0, scale=observation_noise_scale)

Examples

A state-space model with day-of-week seasonality on hourly data:

day_of_week = SeasonalStateSpaceModel(
  num_timesteps=30,
  num_seasons=7,
  drift_scale=0.1,
  initial_state_prior=tfd.MultivariateNormalDiag(
    scale_diag=tf.ones([7], dtype=tf.float32),
  num_steps_per_season=24)

A model with basic month-of-year seasonality on daily data, demonstrating seasons of varying length:

month_of_year = SeasonalStateSpaceModel(
  num_timesteps=2 * 365,  # 2 years
  num_seasons=12,
  drift_scale=0.1,
  initial_state_prior=tfd.MultivariateNormalDiag(
    scale_diag=tf.ones([12], dtype=tf.float32)),
  num_steps_per_season=[31, 28, 31, 30, 30, 31, 31, 31, 30, 31, 30, 31],
  initial_step=22)

Note that we've used initial_step=22 to denote that the model begins on January 23 (steps are zero-indexed). A general implementation of month-of-year seasonality would require additional logic; this version works over time periods not involving a leap year.

__init__

__init__(
    num_timesteps,
    num_seasons,
    drift_scale,
    initial_state_prior,
    observation_noise_scale=0.0,
    num_steps_per_season=1,
    initial_step=0,
    validate_args=False,
    allow_nan_stats=True,
    name=None
)

Build a state space model implementing seasonal effects.

Args:

  • num_timesteps: Scalar int Tensor number of timesteps to model with this distribution.
  • num_seasons: Scalar Python int number of seasons.
  • drift_scale: Scalar (any additional dimensions are treated as batch dimensions) float Tensor indicating the standard deviation of the change in effect between consecutive occurrences of a given season. This is assumed to be the same for all seasons.
  • initial_state_prior: instance of tfd.MultivariateNormal representing the prior distribution on latent states; must have event shape [num_seasons].
  • observation_noise_scale: Scalar (any additional dimensions are treated as batch dimensions) float Tensor indicating the standard deviation of the observation noise. Default value: 0.
  • num_steps_per_season: Python int number of steps in each season. This may be either a scalar (shape []), in which case all seasons have the same length, or a NumPy array of shape [num_seasons]. Default value: 1.
  • initial_step: Optional scalar int Tensor specifying the starting timestep. Default value: 0.
  • validate_args: Python bool. Whether to validate input with asserts. If validate_args is False, and the inputs are invalid, correct behavior is not guaranteed. Default value: False.
  • allow_nan_stats: Python bool. If False, raise an exception if a statistic (e.g. mean/mode/etc...) is undefined for any batch member. If True, batch members with valid parameters leading to undefined statistics will return NaN for this statistic. Default value: True.
  • name: Python str name prefixed to ops created by this class. Default value: "SeasonalStateSpaceModel".

Raises:

  • ValueError: if num_steps_per_season has invalid shape (neither scalar nor [num_seasons]).

Properties

allow_nan_stats

Python bool describing behavior when a stat is undefined.

Stats return +/- infinity when it makes sense. E.g., the variance of a Cauchy distribution is infinity. However, sometimes the statistic is undefined, e.g., if a distribution's pdf does not achieve a maximum within the support of the distribution, the mode is undefined. If the mean is undefined, then by definition the variance is undefined. E.g. the mean for Student's T for df = 1 is undefined (no clear way to say it is either + or - infinity), so the variance = E[(X - mean)**2] is also undefined.

Returns:

  • allow_nan_stats: Python bool.

batch_shape

Shape of a single sample from a single event index as a TensorShape.

May be partially defined or unknown.

The batch dimensions are indexes into independent, non-identical parameterizations of this distribution.

Returns:

  • batch_shape: TensorShape, possibly unknown.

drift_scale

Standard deviation of the drift in effects between seasonal cycles.

dtype

The DType of Tensors handled by this Distribution.

event_shape

Shape of a single sample from a single batch as a TensorShape.

May be partially defined or unknown.

Returns:

  • event_shape: TensorShape, possibly unknown.

name

Name prepended to all ops created by this Distribution.

num_seasons

Number of seasons.

num_steps_per_season

Number of steps in each season.

observation_noise_scale

Standard deviation of the observation noise.

parameters

Dictionary of parameters used to instantiate this Distribution.

reparameterization_type

Describes how samples from the distribution are reparameterized.

Currently this is one of the static instances tfd.FULLY_REPARAMETERIZED or tfd.NOT_REPARAMETERIZED.

Returns:

An instance of ReparameterizationType.

validate_args

Python bool indicating possibly expensive checks are enabled.

Methods

batch_shape_tensor

batch_shape_tensor(name='batch_shape_tensor')

Shape of a single sample from a single event index as a 1-D Tensor.

The batch dimensions are indexes into independent, non-identical parameterizations of this distribution.

Args:

  • name: name to give to the op

Returns:

  • batch_shape: Tensor.

cdf

cdf(
    value,
    name='cdf'
)

Cumulative distribution function.

Given random variable X, the cumulative distribution function cdf is:

cdf(x) := P[X <= x]

Args:

  • value: float or double Tensor.
  • name: Python str prepended to names of ops created by this function.

Returns:

  • cdf: a Tensor of shape sample_shape(x) + self.batch_shape with values of type self.dtype.

copy

copy(**override_parameters_kwargs)

Creates a deep copy of the distribution.

Args:

  • **override_parameters_kwargs: String/value dictionary of initialization arguments to override with new values.

Returns:

  • distribution: A new instance of type(self) initialized from the union of self.parameters and override_parameters_kwargs, i.e., dict(self.parameters, **override_parameters_kwargs).

covariance

covariance(name='covariance')

Covariance.

Covariance is (possibly) defined only for non-scalar-event distributions.

For example, for a length-k, vector-valued distribution, it is calculated as,

Cov[i, j] = Covariance(X_i, X_j) = E[(X_i - E[X_i]) (X_j - E[X_j])]

where Cov is a (batch of) k x k matrix, 0 <= (i, j) < k, and E denotes expectation.

Alternatively, for non-vector, multivariate distributions (e.g., matrix-valued, Wishart), Covariance shall return a (batch of) matrices under some vectorization of the events, i.e.,

Cov[i, j] = Covariance(Vec(X)_i, Vec(X)_j) = [as above]

where Cov is a (batch of) k' x k' matrices, 0 <= (i, j) < k' = reduce_prod(event_shape), and Vec is some function mapping indices of this distribution's event dimensions to indices of a length-k' vector.

Args:

  • name: Python str prepended to names of ops created by this function.

Returns:

  • covariance: Floating-point Tensor with shape [B1, ..., Bn, k', k'] where the first n dimensions are batch coordinates and k' = reduce_prod(self.event_shape).

cross_entropy

cross_entropy(
    other,
    name='cross_entropy'
)

Computes the (Shannon) cross entropy.

Denote this distribution (self) by P and the other distribution by Q. Assuming P, Q are absolutely continuous with respect to one another and permit densities p(x) dr(x) and q(x) dr(x), (Shanon) cross entropy is defined as:

H[P, Q] = E_p[-log q(X)] = -int_F p(x) log q(x) dr(x)

where F denotes the support of the random variable X ~ P.

Args:

Returns:

  • cross_entropy: self.dtype Tensor with shape [B1, ..., Bn] representing n different calculations of (Shanon) cross entropy.

entropy

entropy(name='entropy')

Shannon entropy in nats.

event_shape_tensor

event_shape_tensor(name='event_shape_tensor')

Shape of a single sample from a single batch as a 1-D int32 Tensor.

Args:

  • name: name to give to the op

Returns:

  • event_shape: Tensor.

forward_filter

forward_filter(x)

Run a Kalman filter over a provided sequence of outputs.

Note that the returned values filtered_means, predicted_means, and observation_means depend on the observed time series x, while the corresponding covariances are independent of the observed series; i.e., they depend only on the model itself. This means that the mean values have shape concat([sample_shape(x), batch_shape, [num_timesteps, {latent/observation}_size]]), while the covariances have shape concat[(batch_shape, [num_timesteps, {latent/observation}_size, {latent/observation}_size]]), which does not depend on the sample shape.

Args:

  • x: a float-type Tensor with rightmost dimensions [num_timesteps, observation_size] matching self.event_shape. Additional dimensions must match or be broadcastable to self.batch_shape; any further dimensions are interpreted as a sample shape.

Returns:

  • log_likelihoods: Per-timestep log marginal likelihoods log p(x_t | x_{:t-1}) evaluated at the input x, as a Tensor of shape sample_shape(x) + batch_shape + [num_timesteps].
  • filtered_means: Means of the per-timestep filtered marginal distributions p(zt | x{:t}), as a Tensor of shape sample_shape(x) + batch_shape + [num_timesteps, latent_size].
  • filtered_covs: Covariances of the per-timestep filtered marginal distributions p(zt | x{:t}), as a Tensor of shape batch_shape + [num_timesteps, latent_size, latent_size].
  • predicted_means: Means of the per-timestep predictive distributions over latent states, p(z{t+1} | x{:t}), as a Tensor of shape sample_shape(x) + batch_shape + [num_timesteps, latent_size].
  • predicted_covs: Covariances of the per-timestep predictive distributions over latent states, p(z{t+1} | x{:t}), as a Tensor of shape batch_shape + [num_timesteps, latent_size, latent_size].
  • observation_means: Means of the per-timestep predictive distributions over observations, p(x{t} | x{:t-1}), as a Tensor of shape sample_shape(x) + batch_shape + [num_timesteps, observation_size].
  • observation_covs: Covariances of the per-timestep predictive distributions over observations, p(x{t} | x{:t-1}), as a Tensor of shape batch_shape + [num_timesteps, observation_size, observation_size].

is_scalar_batch

is_scalar_batch(name='is_scalar_batch')

Indicates that batch_shape == [].

Args:

  • name: Python str prepended to names of ops created by this function.

Returns:

  • is_scalar_batch: bool scalar Tensor.

is_scalar_event

is_scalar_event(name='is_scalar_event')

Indicates that event_shape == [].

Args:

  • name: Python str prepended to names of ops created by this function.

Returns:

  • is_scalar_event: bool scalar Tensor.

kl_divergence

kl_divergence(
    other,
    name='kl_divergence'
)

Computes the Kullback--Leibler divergence.

Denote this distribution (self) by p and the other distribution by q. Assuming p, q are absolutely continuous with respect to reference measure r, the KL divergence is defined as:

KL[p, q] = E_p[log(p(X)/q(X))]
         = -int_F p(x) log q(x) dr(x) + int_F p(x) log p(x) dr(x)
         = H[p, q] - H[p]

where F denotes the support of the random variable X ~ p, H[., .] denotes (Shanon) cross entropy, and H[.] denotes (Shanon) entropy.

Args:

Returns:

  • kl_divergence: self.dtype Tensor with shape [B1, ..., Bn] representing n different calculations of the Kullback-Leibler divergence.

log_cdf

log_cdf(
    value,
    name='log_cdf'
)

Log cumulative distribution function.

Given random variable X, the cumulative distribution function cdf is:

log_cdf(x) := Log[ P[X <= x] ]

Often, a numerical approximation can be used for log_cdf(x) that yields a more accurate answer than simply taking the logarithm of the cdf when x << -1.

Args:

  • value: float or double Tensor.
  • name: Python str prepended to names of ops created by this function.

Returns:

  • logcdf: a Tensor of shape sample_shape(x) + self.batch_shape with values of type self.dtype.

log_prob

log_prob(
    value,
    name='log_prob'
)

Log probability density/mass function.

Args:

  • value: float or double Tensor.
  • name: Python str prepended to names of ops created by this function.

Returns:

  • log_prob: a Tensor of shape sample_shape(x) + self.batch_shape with values of type self.dtype.

log_survival_function

log_survival_function(
    value,
    name='log_survival_function'
)

Log survival function.

Given random variable X, the survival function is defined:

log_survival_function(x) = Log[ P[X > x] ]
                         = Log[ 1 - P[X <= x] ]
                         = Log[ 1 - cdf(x) ]

Typically, different numerical approximations can be used for the log survival function, which are more accurate than 1 - cdf(x) when x >> 1.

Args:

  • value: float or double Tensor.
  • name: Python str prepended to names of ops created by this function.

Returns:

Tensor of shape sample_shape(x) + self.batch_shape with values of type self.dtype.

mean

mean(name='mean')

Mean.

mode

mode(name='mode')

Mode.

param_shapes

param_shapes(
    cls,
    sample_shape,
    name='DistributionParamShapes'
)

Shapes of parameters given the desired shape of a call to sample().

This is a class method that describes what key/value arguments are required to instantiate the given Distribution so that a particular shape is returned for that instance's call to sample().

Subclasses should override class method _param_shapes.

Args:

  • sample_shape: Tensor or python list/tuple. Desired shape of a call to sample().
  • name: name to prepend ops with.

Returns:

dict of parameter name to Tensor shapes.

param_static_shapes

param_static_shapes(
    cls,
    sample_shape
)

param_shapes with static (i.e. TensorShape) shapes.

This is a class method that describes what key/value arguments are required to instantiate the given Distribution so that a particular shape is returned for that instance's call to sample(). Assumes that the sample's shape is known statically.

Subclasses should override class method _param_shapes to return constant-valued tensors when constant values are fed.

Args:

  • sample_shape: TensorShape or python list/tuple. Desired shape of a call to sample().

Returns:

dict of parameter name to TensorShape.

Raises:

  • ValueError: if sample_shape is a TensorShape and is not fully defined.

prob

prob(
    value,
    name='prob'
)

Probability density/mass function.

Args:

  • value: float or double Tensor.
  • name: Python str prepended to names of ops created by this function.

Returns:

  • prob: a Tensor of shape sample_shape(x) + self.batch_shape with values of type self.dtype.

quantile

quantile(
    value,
    name='quantile'
)

Quantile function. Aka "inverse cdf" or "percent point function".

Given random variable X and p in [0, 1], the quantile is:

quantile(p) := x such that P[X <= x] == p

Args:

  • value: float or double Tensor.
  • name: Python str prepended to names of ops created by this function.

Returns:

  • quantile: a Tensor of shape sample_shape(x) + self.batch_shape with values of type self.dtype.

sample

sample(
    sample_shape=(),
    seed=None,
    name='sample'
)

Generate samples of the specified shape.

Note that a call to sample() without arguments will generate a single sample.

Args:

  • sample_shape: 0D or 1D int32 Tensor. Shape of the generated samples.
  • seed: Python integer seed for RNG
  • name: name to give to the op.

Returns:

  • samples: a Tensor with prepended dimensions sample_shape.

stddev

stddev(name='stddev')

Standard deviation.

Standard deviation is defined as,

stddev = E[(X - E[X])**2]**0.5

where X is the random variable associated with this distribution, E denotes expectation, and stddev.shape = batch_shape + event_shape.

Args:

  • name: Python str prepended to names of ops created by this function.

Returns:

  • stddev: Floating-point Tensor with shape identical to batch_shape + event_shape, i.e., the same shape as self.mean().

survival_function

survival_function(
    value,
    name='survival_function'
)

Survival function.

Given random variable X, the survival function is defined:

survival_function(x) = P[X > x]
                     = 1 - P[X <= x]
                     = 1 - cdf(x).

Args:

  • value: float or double Tensor.
  • name: Python str prepended to names of ops created by this function.

Returns:

Tensor of shape sample_shape(x) + self.batch_shape with values of type self.dtype.

variance

variance(name='variance')

Variance.

Variance is defined as,

Var = E[(X - E[X])**2]

where X is the random variable associated with this distribution, E denotes expectation, and Var.shape = batch_shape + event_shape.

Args:

  • name: Python str prepended to names of ops created by this function.

Returns:

  • variance: Floating-point Tensor with shape identical to batch_shape + event_shape, i.e., the same shape as self.mean().