# tfp.experimental.substrates.jax.distributions.StudentTProcess

Marginal distribution of a Student's T process at finitely many points.

Inherits From: `Distribution`

A Student's T process (TP) is an indexed collection of random variables, any finite collection of which are jointly Multivariate Student's T. While this definition applies to finite index sets, it is typically implicit that the index set is infinite; in applications, it is often some finite dimensional real or complex vector space. In such cases, the TP may be thought of as a distribution over (real- or complex-valued) functions defined over the index set.

Just as Student's T distributions are fully specified by their degrees of freedom, location and scale, a Student's T process can be completely specified by a degrees of freedom parameter, mean function and covariance function. Let `S` denote the index set and `K` the space in which each indexed random variable takes its values (again, often R or C). The mean function is then a map `m: S -> K`, and the covariance function, or kernel, is a positive-definite function `k: (S x S) -> K`. The properties of functions drawn from a TP are entirely dictated (up to translation) by the form of the kernel function.

This `Distribution` represents the marginal joint distribution over function values at a given finite collection of points `[x[1], ..., x[N]]` from the index set `S`. By definition, this marginal distribution is just a multivariate Student's T distribution, whose mean is given by the vector `[ m(x[1]), ..., m(x[N]) ]` and whose covariance matrix is constructed from pairwise applications of the kernel function to the given inputs:

``````    | k(x[1], x[1])    k(x[1], x[2])  ...  k(x[1], x[N]) |
| k(x[2], x[1])    k(x[2], x[2])  ...  k(x[2], x[N]) |
|      ...              ...                 ...      |
| k(x[N], x[1])    k(x[N], x[2])  ...  k(x[N], x[N]) |
``````

For this to be a valid covariance matrix, it must be symmetric and positive definite; hence the requirement that `k` be a positive definite function (which, by definition, says that the above procedure will yield PD matrices).

Note also we use a parameterization as suggested in [1], which requires `df` to be greater than 2. This allows for the covariance for any finite dimensional marginal of the TP (a multivariate Student's T distribution) to just be the PD matrix generated by the kernel.

#### Mathematical Details

The probability density function (pdf) is a multivariate Student's T whose parameters are derived from the TP's properties:

``````pdf(x; df, index_points, mean_fn, kernel) = MultivariateStudentT(df, loc, K)
K = (df - 2) / df  * (kernel.matrix(index_points, index_points) +
jitter * eye(N))
loc = (x - mean_fn(index_points))^T @ K @ (x - mean_fn(index_points))
``````

where:

• `df` is the degrees of freedom parameter for the TP.
• `index_points` are points in the index set over which the TP is defined,
• `mean_fn` is a callable mapping the index set to the TP's mean values,
• `kernel` is `PositiveSemidefiniteKernel`-like and represents the covariance function of the TP,
• `jitter` is added to the diagonal to ensure positive definiteness up to machine precision (otherwise Cholesky-decomposition is prone to failure),
• `eye(N)` is an N-by-N identity matrix.

#### Examples

##### Draw joint samples from a TP prior
``````import numpy as np
from tensorflow_probability.python.internal.backend.jax.compat import v2 as tf
import tensorflow_probability as tfp; tfp = tfp.experimental.substrates.jax

tf.enable_v2_behavior()

tfd = tfp.distributions
psd_kernels = tfp.math.psd_kernels

num_points = 100
# Index points should be a collection (100, here) of feature vectors. In this
# example, we're using 1-d vectors, so we just need to reshape the output from
# np.linspace, to give a shape of (100, 1).
index_points = np.expand_dims(np.linspace(-1., 1., num_points), -1)

# Define a kernel with default parameters.

tp = tfd.StudentTProcess(3., kernel, index_points)

samples = tp.sample(10)
# ==> 10 independently drawn, joint samples at `index_points`

noisy_tp = tfd.StudentTProcess(
df=3.,
kernel=kernel,
index_points=index_points)
noisy_samples = noisy_tp.sample(10)
# ==> 10 independently drawn, noisy joint samples at `index_points`
``````
##### Optimize kernel parameters via maximum marginal likelihood.
``````# Suppose we have some data from a known function. Note the index points in
# general have shape `[b1, ..., bB, f1, ..., fF]` (here we assume `F == 1`),
# so we need to explicitly consume the feature dimensions (just the last one
# here).
f = lambda x: np.sin(10*x[..., 0]) * np.exp(-x[..., 0]**2)
observed_index_points = np.expand_dims(np.random.uniform(-1., 1., 50), -1)
# Squeeze to take the shape from [50, 1] to [50].
observed_values = f(observed_index_points)

amplitude = tfp.util.TransformedVariable(
1., tfp.bijectors.Softplus(), dtype=np.float64, name='amplitude')
length_scale = tfp.util.TransformedVariable(
1., tfp.bijectors.Softplus(), dtype=np.float64, name='length_scale')

# Define a kernel with trainable parameters.
amplitude=amplitude,
length_scale=length_scale)

tp = tfd.StudentTProcess(3., kernel, observed_index_points)

@tf.function
def optimize():
loss = -tp.log_prob(observed_values)
return loss

for i in range(1000):
nll = optimize()
if i % 100 == 0:
print("Step {}: NLL = {}".format(i, nll))
print("Final NLL = {}".format(nll))
``````

#### References

[1]: Amar Shah, Andrew Gordon Wilson, and Zoubin Ghahramani. Student-t Processes as Alternatives to Gaussian Processes. In Artificial Intelligence and Statistics, 2014. https://www.cs.cmu.edu/~andrewgw/tprocess.pdf

`df` Positive Floating-point `Tensor` representing the degrees of freedom. Must be greater than 2.
`kernel` `PositiveSemidefiniteKernel`-like instance representing the TP's covariance function.
`index_points` `float` `Tensor` representing finite (batch of) vector(s) of points in the index set over which the TP is defined. Shape has the form `[b1, ..., bB, e, f1, ..., fF]` where `F` is the number of feature dimensions and must equal `kernel.feature_ndims` and `e` is the number (size) of index points in each batch. Ultimately this distribution corresponds to a `e`-dimensional multivariate Student's T. The batch shape must be broadcastable with `kernel.batch_shape` and any batch dims yielded by `mean_fn`.
`mean_fn` Python `callable` that acts on `index_points` to produce a (batch of) vector(s) of mean values at `index_points`. Takes a `Tensor` of shape `[b1, ..., bB, f1, ..., fF]` and returns a `Tensor` whose shape is broadcastable with `[b1, ..., bB]`. Default value: `None` implies constant zero function.
`jitter` `float` scalar `Tensor` added to the diagonal of the covariance matrix to ensure positive definiteness of the covariance matrix. Default value: `1e-6`.
`validate_args` Python `bool`, default `False`. When `True` distribution parameters are checked for validity despite possibly degrading runtime performance. When `False` invalid inputs may silently render incorrect outputs. Default value: `False`.
`allow_nan_stats` Python `bool`, default `True`. When `True`, statistics (e.g., mean, mode, variance) use the value "`NaN`" to indicate the result is undefined. When `False`, an exception is raised if one or more of the statistic's batch members are undefined. Default value: `False`.
`name` Python `str` name prefixed to Ops created by this class. Default value: "StudentTProcess".

`ValueError` if `mean_fn` is not `None` and is not callable.

`allow_nan_stats` Python `bool` describing behavior when a stat is undefined.

Stats return +/- infinity when it makes sense. E.g., the variance of a Cauchy distribution is infinity. However, sometimes the statistic is undefined, e.g., if a distribution's pdf does not achieve a maximum within the support of the distribution, the mode is undefined. If the mean is undefined, then by definition the variance is undefined. E.g. the mean for Student's T for df = 1 is undefined (no clear way to say it is either + or - infinity), so the variance = E[(X - mean)**2] is also undefined.

`batch_shape` Shape of a single sample from a single event index as a `TensorShape`.

May be partially defined or unknown.

The batch dimensions are indexes into independent, non-identical parameterizations of this distribution.

`df`

`dtype` The `DType` of `Tensor`s handled by this `Distribution`.
`event_shape` Shape of a single sample from a single batch as a `TensorShape`.

May be partially defined or unknown.

`index_points`

`jitter`

`kernel`

`mean_fn`

`name` Name prepended to all ops created by this `Distribution`.
`parameters` Dictionary of parameters used to instantiate this `Distribution`.
`reparameterization_type` Describes how samples from the distribution are reparameterized.

Currently this is one of the static instances `tfd.FULLY_REPARAMETERIZED` or `tfd.NOT_REPARAMETERIZED`.

`trainable_variables`

`validate_args` Python `bool` indicating possibly expensive checks are enabled.
`variables`

## Methods

### `batch_shape_tensor`

View source

Shape of a single sample from a single event index as a 1-D `Tensor`.

The batch dimensions are indexes into independent, non-identical parameterizations of this distribution.

Args
`name` name to give to the op

Returns
`batch_shape` `Tensor`.

### `cdf`

View source

Cumulative distribution function.

Given random variable `X`, the cumulative distribution function `cdf` is:

``````cdf(x) := P[X <= x]
``````

Args
`value` `float` or `double` `Tensor`.
`name` Python `str` prepended to names of ops created by this function.
`**kwargs` Named arguments forwarded to subclass implementation.

Returns
`cdf` a `Tensor` of shape `sample_shape(x) + self.batch_shape` with values of type `self.dtype`.

### `copy`

View source

Creates a deep copy of the distribution.

Args
`**override_parameters_kwargs` String/value dictionary of initialization arguments to override with new values.

Returns
`distribution` A new instance of `type(self)` initialized from the union of self.parameters and override_parameters_kwargs, i.e., `dict(self.parameters, **override_parameters_kwargs)`.

### `covariance`

View source

Covariance.

Covariance is (possibly) defined only for non-scalar-event distributions.

For example, for a length-`k`, vector-valued distribution, it is calculated as,

``````Cov[i, j] = Covariance(X_i, X_j) = E[(X_i - E[X_i]) (X_j - E[X_j])]
``````

where `Cov` is a (batch of) `k x k` matrix, `0 <= (i, j) < k`, and `E` denotes expectation.

Alternatively, for non-vector, multivariate distributions (e.g., matrix-valued, Wishart), `Covariance` shall return a (batch of) matrices under some vectorization of the events, i.e.,

``````Cov[i, j] = Covariance(Vec(X)_i, Vec(X)_j) = [as above]
``````

where `Cov` is a (batch of) `k' x k'` matrices, `0 <= (i, j) < k' = reduce_prod(event_shape)`, and `Vec` is some function mapping indices of this distribution's event dimensions to indices of a length-`k'` vector.

Args
`name` Python `str` prepended to names of ops created by this function.
`**kwargs` Named arguments forwarded to subclass implementation.

Returns
`covariance` Floating-point `Tensor` with shape `[B1, ..., Bn, k', k']` where the first `n` dimensions are batch coordinates and `k' = reduce_prod(self.event_shape)`.

### `cross_entropy`

View source

Computes the (Shannon) cross entropy.

Denote this distribution (`self`) by `P` and the `other` distribution by `Q`. Assuming `P, Q` are absolutely continuous with respect to one another and permit densities `p(x) dr(x)` and `q(x) dr(x)`, (Shannon) cross entropy is defined as:

``````H[P, Q] = E_p[-log q(X)] = -int_F p(x) log q(x) dr(x)
``````

where `F` denotes the support of the random variable `X ~ P`.

Args
`other` `tfp.distributions.Distribution` instance.
`name` Python `str` prepended to names of ops created by this function.

Returns
`cross_entropy` `self.dtype` `Tensor` with shape `[B1, ..., Bn]` representing `n` different calculations of (Shannon) cross entropy.

### `entropy`

View source

Shannon entropy in nats.

### `event_shape_tensor`

View source

Shape of a single sample from a single batch as a 1-D int32 `Tensor`.

Args
`name` name to give to the op

Returns
`event_shape` `Tensor`.

### `get_marginal_distribution`

View source

Compute the marginal over function values at `index_points`.

Args
`index_points` `float` `Tensor` representing finite (batch of) vector(s) of points in the index set over which the TP is defined. Shape has the form `[b1, ..., bB, e, f1, ..., fF]` where `F` is the number of feature dimensions and must equal `kernel.feature_ndims` and `e` is the number (size) of index points in each batch. Ultimately this distribution corresponds to a `e`-dimensional multivariate student t. The batch shape must be broadcastable with `kernel.batch_shape` and any batch dims yielded by `mean_fn`.

Returns
`marginal` a `StudentT` or `MultivariateStudentT` distribution, according to whether `index_points` consists of one or many index points, respectively.

### `is_scalar_batch`

View source

Indicates that `batch_shape == []`.

Args
`name` Python `str` prepended to names of ops created by this function.

Returns
`is_scalar_batch` `bool` scalar `Tensor`.

### `is_scalar_event`

View source

Indicates that `event_shape == []`.

Args
`name` Python `str` prepended to names of ops created by this function.

Returns
`is_scalar_event` `bool` scalar `Tensor`.

### `kl_divergence`

View source

Computes the Kullback--Leibler divergence.

Denote this distribution (`self`) by `p` and the `other` distribution by `q`. Assuming `p, q` are absolutely continuous with respect to reference measure `r`, the KL divergence is defined as:

``````KL[p, q] = E_p[log(p(X)/q(X))]
= -int_F p(x) log q(x) dr(x) + int_F p(x) log p(x) dr(x)
= H[p, q] - H[p]
``````

where `F` denotes the support of the random variable `X ~ p`, `H[., .]` denotes (Shannon) cross entropy, and `H[.]` denotes (Shannon) entropy.

Args
`other` `tfp.distributions.Distribution` instance.
`name` Python `str` prepended to names of ops created by this function.

Returns
`kl_divergence` `self.dtype` `Tensor` with shape `[B1, ..., Bn]` representing `n` different calculations of the Kullback-Leibler divergence.

### `log_cdf`

View source

Log cumulative distribution function.

Given random variable `X`, the cumulative distribution function `cdf` is:

``````log_cdf(x) := Log[ P[X <= x] ]
``````

Often, a numerical approximation can be used for `log_cdf(x)` that yields a more accurate answer than simply taking the logarithm of the `cdf` when `x << -1`.

Args
`value` `float` or `double` `Tensor`.
`name` Python `str` prepended to names of ops created by this function.
`**kwargs` Named arguments forwarded to subclass implementation.

Returns
`logcdf` a `Tensor` of shape `sample_shape(x) + self.batch_shape` with values of type `self.dtype`.

### `log_prob`

View source

Log probability density/mass function.

Args
`value` `float` or `double` `Tensor`.
`name` Python `str` prepended to names of ops created by this function.
`**kwargs` Named arguments forwarded to subclass implementation.

Returns
`log_prob` a `Tensor` of shape `sample_shape(x) + self.batch_shape` with values of type `self.dtype`.

### `log_survival_function`

View source

Log survival function.

Given random variable `X`, the survival function is defined:

``````log_survival_function(x) = Log[ P[X > x] ]
= Log[ 1 - P[X <= x] ]
= Log[ 1 - cdf(x) ]
``````

Typically, different numerical approximations can be used for the log survival function, which are more accurate than `1 - cdf(x)` when `x >> 1`.

Args
`value` `float` or `double` `Tensor`.
`name` Python `str` prepended to names of ops created by this function.
`**kwargs` Named arguments forwarded to subclass implementation.

Returns
`Tensor` of shape `sample_shape(x) + self.batch_shape` with values of type `self.dtype`.

View source

Mean.

View source

Mode.

### `param_shapes`

View source

Shapes of parameters given the desired shape of a call to `sample()`.

This is a class method that describes what key/value arguments are required to instantiate the given `Distribution` so that a particular shape is returned for that instance's call to `sample()`.

Subclasses should override class method `_param_shapes`.

Args
`sample_shape` `Tensor` or python list/tuple. Desired shape of a call to `sample()`.
`name` name to prepend ops with.

Returns
`dict` of parameter name to `Tensor` shapes.

### `param_static_shapes`

View source

param_shapes with static (i.e. `TensorShape`) shapes.

This is a class method that describes what key/value arguments are required to instantiate the given `Distribution` so that a particular shape is returned for that instance's call to `sample()`. Assumes that the sample's shape is known statically.

Subclasses should override class method `_param_shapes` to return constant-valued tensors when constant values are fed.

Args
`sample_shape` `TensorShape` or python list/tuple. Desired shape of a call to `sample()`.

Returns
`dict` of parameter name to `TensorShape`.

Raises
`ValueError` if `sample_shape` is a `TensorShape` and is not fully defined.

### `prob`

View source

Probability density/mass function.

Args
`value` `float` or `double` `Tensor`.
`name` Python `str` prepended to names of ops created by this function.
`**kwargs` Named arguments forwarded to subclass implementation.

Returns
`prob` a `Tensor` of shape `sample_shape(x) + self.batch_shape` with values of type `self.dtype`.

### `quantile`

View source

Quantile function. Aka 'inverse cdf' or 'percent point function'.

Given random variable `X` and `p in [0, 1]`, the `quantile` is:

``````quantile(p) := x such that P[X <= x] == p
``````

Args
`value` `float` or `double` `Tensor`.
`name` Python `str` prepended to names of ops created by this function.
`**kwargs` Named arguments forwarded to subclass implementation.

Returns
`quantile` a `Tensor` of shape `sample_shape(x) + self.batch_shape` with values of type `self.dtype`.

### `sample`

View source

Generate samples of the specified shape.

Note that a call to `sample()` without arguments will generate a single sample.

Args
`sample_shape` 0D or 1D `int32` `Tensor`. Shape of the generated samples.
`seed` Python integer or `tfp.util.SeedStream` instance, for seeding PRNG.
`name` name to give to the op.
`**kwargs` Named arguments forwarded to subclass implementation.

Returns
`samples` a `Tensor` with prepended dimensions `sample_shape`.

### `stddev`

View source

Standard deviation.

Standard deviation is defined as,

``````stddev = E[(X - E[X])**2]**0.5
``````

where `X` is the random variable associated with this distribution, `E` denotes expectation, and `stddev.shape = batch_shape + event_shape`.

Args
`name` Python `str` prepended to names of ops created by this function.
`**kwargs` Named arguments forwarded to subclass implementation.

Returns
`stddev` Floating-point `Tensor` with shape identical to `batch_shape + event_shape`, i.e., the same shape as `self.mean()`.

### `survival_function`

View source

Survival function.

Given random variable `X`, the survival function is defined:

``````survival_function(x) = P[X > x]
= 1 - P[X <= x]
= 1 - cdf(x).
``````

Args
`value` `float` or `double` `Tensor`.
`name` Python `str` prepended to names of ops created by this function.
`**kwargs` Named arguments forwarded to subclass implementation.

Returns
`Tensor` of shape `sample_shape(x) + self.batch_shape` with values of type `self.dtype`.

### `variance`

View source

Variance.

Variance is defined as,

``````Var = E[(X - E[X])**2]
``````

where `X` is the random variable associated with this distribution, `E` denotes expectation, and `Var.shape = batch_shape + event_shape`.

Args
`name` Python `str` prepended to names of ops created by this function.
`**kwargs` Named arguments forwarded to subclass implementation.

Returns
`variance` Floating-point `Tensor` with shape identical to `batch_shape + event_shape`, i.e., the same shape as `self.mean()`.

### `__getitem__`

View source

Slices the batch axes of this distribution, returning a new instance.

``````b = tfd.Bernoulli(logits=tf.zeros([3, 5, 7, 9]))
b.batch_shape  # => [3, 5, 7, 9]
b2 = b[:, tf.newaxis, ..., -2:, 1::2]
b2.batch_shape  # => [3, 1, 5, 2, 4]

x = tf.random.stateless_normal([5, 3, 2, 2])
cov = tf.matmul(x, x, transpose_b=True)
chol = tf.cholesky(cov)
loc = tf.random.stateless_normal([4, 1, 3, 1])
mvn = tfd.MultivariateNormalTriL(loc, chol)
mvn.batch_shape  # => [4, 5, 3]
mvn.event_shape  # => [2]
mvn2 = mvn[:, 3:, ..., ::-1, tf.newaxis]
mvn2.batch_shape  # => [4, 2, 3, 1]
mvn2.event_shape  # => [2]
``````

Args
`slices` slices from the [] operator

Returns
`dist` A new `tfd.Distribution` instance with sliced parameters.

View source