Missed TensorFlow Dev Summit? Check out the video playlist. Watch recordings

tfp.experimental.substrates.numpy.distributions.JointDistribution

View source on GitHub

Joint distribution over one or more component distributions.

Inherits From: Distribution

tfp.experimental.substrates.numpy.distributions.JointDistribution(
    dtype, reparameterization_type, validate_args, allow_nan_stats, parameters=None,
    graph_parents=None, name=None
)

This distribution enables both sampling and joint probability computation from a single model specification.

A joint distribution is a collection of possibly interdependent distributions.

Note: unlike other non-JointDistribution distributions in tfp.distributions, JointDistribution.sample (and subclasses) return a structure of Tensors rather than a Tensor. A structure can be a list, tuple, dict, collections.namedtuple, etc. Accordingly joint.batch_shape returns a structure of TensorShapes for each of the distributions' batch shapes and joint.batch_shape_tensor() returns a structure of Tensors for each of the distributions' event shapes. (Same with event_shape analogues.)

Subclass Requirements

Subclasses implement:

  • _flat_sample_distributions: returns two list-likes: the first being a sequence of Distribution-like instances the second being a sequence of Tensor samples, each one drawn from its corresponding Distribution-like instance. The optional value argument is either None or a list-like with the same len as either of the results.

  • _model_flatten: takes a structured input and returns a sequence.

  • _model_unflatten: takes a sequence and returns a structure matching the semantics of the JointDistribution subclass.

Subclasses initialize:

  • _single_sample_distributions: an iterable sequence of distributions which are known at __init__ or None.

Args:

  • dtype: The type of the event samples. None implies no type-enforcement.
  • reparameterization_type: Instance of ReparameterizationType. If tfd.FULLY_REPARAMETERIZED, then samples from the distribution are fully reparameterized, and straight-through gradients are supported. If tfd.NOT_REPARAMETERIZED, then samples from the distribution are not fully reparameterized, and straight-through gradients are either partially unsupported or are not supported at all.
  • validate_args: Python bool, default False. When True distribution parameters are checked for validity despite possibly degrading runtime performance. When False invalid inputs may silently render incorrect outputs.
  • allow_nan_stats: Python bool, default True. When True, statistics (e.g., mean, mode, variance) use the value "NaN" to indicate the result is undefined. When False, an exception is raised if one or more of the statistic's batch members are undefined.
  • parameters: Python dict of parameters used to instantiate this Distribution.
  • graph_parents: Python list of graph prerequisites of this Distribution.
  • name: Python str name prefixed to Ops created by this class. Default: subclass name.

Attributes:

  • allow_nan_stats: Python bool describing behavior when a stat is undefined.

    Stats return +/- infinity when it makes sense. E.g., the variance of a Cauchy distribution is infinity. However, sometimes the statistic is undefined, e.g., if a distribution's pdf does not achieve a maximum within the support of the distribution, the mode is undefined. If the mean is undefined, then by definition the variance is undefined. E.g. the mean for Student's T for df = 1 is undefined (no clear way to say it is either + or - infinity), so the variance = E[(X - mean)**2] is also undefined.

  • batch_shape: Shape of a single sample from a single event index as a TensorShape.

    May be partially defined or unknown.

    The batch dimensions are indexes into independent, non-identical parameterizations of this distribution.

  • dtype: The DType of Tensors handled by this Distribution.

  • event_shape: Shape of a single sample from a single batch as a TensorShape.

    May be partially defined or unknown.

  • model

  • name: Name prepended to all ops created by this Distribution.

  • parameters: Dictionary of parameters used to instantiate this Distribution.

  • reparameterization_type: Describes how samples from the distribution are reparameterized.

    Currently this is one of the static instances tfd.FULLY_REPARAMETERIZED or tfd.NOT_REPARAMETERIZED.

  • trainable_variables

  • validate_args: Python bool indicating possibly expensive checks are enabled.

  • variables

Raises:

  • ValueError: if any member of graph_parents is None or not a Tensor.

Methods

__getitem__

View source

__getitem__(
    slices
)

Slices the batch axes of this distribution, returning a new instance.

b = tfd.Bernoulli(logits=tf.zeros([3, 5, 7, 9]))
b.batch_shape  # => [3, 5, 7, 9]
b2 = b[:, tf.newaxis, ..., -2:, 1::2]
b2.batch_shape  # => [3, 1, 5, 2, 4]

x = tf.random.normal([5, 3, 2, 2])
cov = tf.matmul(x, x, transpose_b=True)
chol = tf.cholesky(cov)
loc = tf.random.normal([4, 1, 3, 1])
mvn = tfd.MultivariateNormalTriL(loc, chol)
mvn.batch_shape  # => [4, 5, 3]
mvn.event_shape  # => [2]
mvn2 = mvn[:, 3:, ..., ::-1, tf.newaxis]
mvn2.batch_shape  # => [4, 2, 3, 1]
mvn2.event_shape  # => [2]

Args:

  • slices: slices from the [] operator

Returns:

  • dist: A new tfd.Distribution instance with sliced parameters.

__iter__

View source

__iter__()

batch_shape_tensor

View source

batch_shape_tensor(
    sample_shape=(), name='batch_shape_tensor'
)

Shape of a single sample from a single event index as a 1-D Tensor.

The batch dimensions are indexes into independent, non-identical parameterizations of this distribution.

Args:

  • sample_shape: The sample shape under which to evaluate the joint distribution. Sample shape at root (toplevel) nodes may affect the batch or event shapes of child nodes.
  • name: name to give to the op

Returns:

  • batch_shape: Tensor representing batch shape of each distribution in model.

cdf

View source

cdf(
    value, name='cdf', **kwargs
)

Cumulative distribution function.

Given random variable X, the cumulative distribution function cdf is:

cdf(x) := P[X <= x]

Args:

  • value: float or double Tensor.
  • name: Python str prepended to names of ops created by this function.
  • **kwargs: Named arguments forwarded to subclass implementation.

Returns:

  • cdf: a Tensor of shape sample_shape(x) + self.batch_shape with values of type self.dtype.

copy

View source

copy(
    **override_parameters_kwargs
)

Creates a deep copy of the distribution.

Args:

  • **override_parameters_kwargs: String/value dictionary of initialization arguments to override with new values.

Returns:

  • distribution: A new instance of type(self) initialized from the union of self.parameters and override_parameters_kwargs, i.e., dict(self.parameters, **override_parameters_kwargs).

covariance

View source

covariance(
    name='covariance', **kwargs
)

Covariance.

Covariance is (possibly) defined only for non-scalar-event distributions.

For example, for a length-k, vector-valued distribution, it is calculated as,

Cov[i, j] = Covariance(X_i, X_j) = E[(X_i - E[X_i]) (X_j - E[X_j])]

where Cov is a (batch of) k x k matrix, 0 <= (i, j) < k, and E denotes expectation.

Alternatively, for non-vector, multivariate distributions (e.g., matrix-valued, Wishart), Covariance shall return a (batch of) matrices under some vectorization of the events, i.e.,

Cov[i, j] = Covariance(Vec(X)_i, Vec(X)_j) = [as above]

where Cov is a (batch of) k' x k' matrices, 0 <= (i, j) < k' = reduce_prod(event_shape), and Vec is some function mapping indices of this distribution's event dimensions to indices of a length-k' vector.

Args:

  • name: Python str prepended to names of ops created by this function.
  • **kwargs: Named arguments forwarded to subclass implementation.

Returns:

  • covariance: Floating-point Tensor with shape [B1, ..., Bn, k', k'] where the first n dimensions are batch coordinates and k' = reduce_prod(self.event_shape).

cross_entropy

View source

cross_entropy(
    other, name='cross_entropy'
)

Computes the (Shannon) cross entropy.

Denote this distribution (self) by P and the other distribution by Q. Assuming P, Q are absolutely continuous with respect to one another and permit densities p(x) dr(x) and q(x) dr(x), (Shannon) cross entropy is defined as:

H[P, Q] = E_p[-log q(X)] = -int_F p(x) log q(x) dr(x)

where F denotes the support of the random variable X ~ P.

Args:

Returns:

  • cross_entropy: self.dtype Tensor with shape [B1, ..., Bn] representing n different calculations of (Shannon) cross entropy.

entropy

View source

entropy(
    name='entropy', **kwargs
)

Shannon entropy in nats.

event_shape_tensor

View source

event_shape_tensor(
    sample_shape=(), name='event_shape_tensor'
)

Shape of a single sample from a single batch as a 1-D int32 Tensor.

Args:

  • sample_shape: The sample shape under which to evaluate the joint distribution. Sample shape at root (toplevel) nodes may affect the batch or event shapes of child nodes.
  • name: name to give to the op

Returns:

  • event_shape: tuple of Tensors representing the event_shape for each distribution in model.

is_scalar_batch

View source

is_scalar_batch(
    name='is_scalar_batch'
)

Indicates that batch_shape == [].

Args:

  • name: Python str prepended to names of ops created by this function.

Returns:

  • is_scalar_batch: bool scalar Tensor for each distribution in model.

is_scalar_event

View source

is_scalar_event(
    name='is_scalar_event'
)

Indicates that event_shape == [].

Args:

  • name: Python str prepended to names of ops created by this function.

Returns:

  • is_scalar_event: bool scalar Tensor for each distribution in model.

kl_divergence

View source

kl_divergence(
    other, name='kl_divergence'
)

Computes the Kullback--Leibler divergence.

Denote this distribution (self) by p and the other distribution by q. Assuming p, q are absolutely continuous with respect to reference measure r, the KL divergence is defined as:

KL[p, q] = E_p[log(p(X)/q(X))]
         = -int_F p(x) log q(x) dr(x) + int_F p(x) log p(x) dr(x)
         = H[p, q] - H[p]

where F denotes the support of the random variable X ~ p, H[., .] denotes (Shannon) cross entropy, and H[.] denotes (Shannon) entropy.

Args:

Returns:

  • kl_divergence: self.dtype Tensor with shape [B1, ..., Bn] representing n different calculations of the Kullback-Leibler divergence.

log_cdf

View source

log_cdf(
    value, name='log_cdf', **kwargs
)

Log cumulative distribution function.

Given random variable X, the cumulative distribution function cdf is:

log_cdf(x) := Log[ P[X <= x] ]

Often, a numerical approximation can be used for log_cdf(x) that yields a more accurate answer than simply taking the logarithm of the cdf when x << -1.

Args:

  • value: float or double Tensor.
  • name: Python str prepended to names of ops created by this function.
  • **kwargs: Named arguments forwarded to subclass implementation.

Returns:

  • logcdf: a Tensor of shape sample_shape(x) + self.batch_shape with values of type self.dtype.

log_prob

View source

log_prob(
    *args, **kwargs
)

Log probability density/mass function.

The measure methods of `JointDistribution` (`log_prob`, `prob`, etc.)
can be called either by passing a single structure of tensors or by using
named args for each part of the joint distribution state. For example,
jd = tfd.JointDistributionSequential([
    tfd.Normal(0., 1.),
    lambda z: tfd.Normal(z, 1.)
], validate_args=True)
jd.dtype
# ==> [tf.float32, tf.float32]
z, x = sample = jd.sample()
# The following calling styles are all permissable and produce the exactly
# the same output.
assert (jd.log_prob(sample) ==
        jd.log_prob(value=sample) ==
        jd.log_prob(z, x) ==
        jd.log_prob(z=z, x=x) ==
        jd.log_prob(z, x=x))

# These calling possibilities also imply that one can also use `*`
# expansion, if `sample` is a sequence:
jd.log_prob(*sample)
# and similarly, if `sample` is a map, one can use `**` expansion:
jd.log_prob(**sample)
`JointDistribution` component distributions names are resolved via
`jd._flat_resolve_names()`, which is implemented by each `JointDistribution`
subclass (see subclass documentation for details). Generally, for components
where a name was provided---
either explicitly as the `name` argument to a distribution or as a key in a
dict-valued JointDistribution, or implicitly, e.g., by the argument name of
a `JointDistributionSequential` distribution-making function---the provided
name will be used. Otherwise the component will receive a dummy name; these
may change without warning and should not be relied upon.

Note: not all `JointDistribution` subclasses support all calling styles;
for example, `JointDistributionNamed` does not support positional arguments
(aka "unnamed arguments") unless the provided model specifies an ordering of
variables (i.e., is an `collections.OrderedDict` or `collections.namedtuple`
rather than a plain `dict`).

Note: care is taken to resolve any potential ambiguity---this is generally
possible by inspecting the structure of the provided argument and "aligning"
it to the joint distribution output structure (defined by `jd.dtype`). For
example,
trivial_jd = tfd.JointDistributionSequential([tfd.Exponential(1.)])
trivial_jd.dtype  # => [tf.float32]
trivial_jd.log_prob([4.])
# ==> Tensor with shape `[]`.
lp = trivial_jd.log_prob(4.)
# ==> Tensor with shape `[]`.
Notice that in the first call, `[4.]` is interpreted as a list of one
scalar while in the second call the input is a scalar. Hence both inputs
result in identical scalar outputs. If we wanted to pass an explicit
vector to the `Exponential` component---creating a vector-shaped batch
of `log_prob`s---we could instead write
`trivial_jd.log_prob(np.array([4]))`.

Args:
  *args: Positional arguments: a `value` structure or component values
    (see above).
  **kwargs: Keyword arguments: a `value` structure or component values
    (see above). May also include `name`, specifying a Python string name
    for ops generated by this method.

Returns:

  • log_prob: a Tensor of shape sample_shape(x) + self.batch_shape with values of type self.dtype.

log_prob_parts

View source

log_prob_parts(
    value, name='log_prob_parts'
)

Log probability density/mass function.

Args:

  • value: list of Tensors in distribution_fn order for which we compute the log_prob_parts and to parameterize other ("downstream") distributions.
  • name: name prepended to ops created by this function. Default value: "log_prob_parts".

Returns:

  • log_prob_parts: a tuple of Tensors representing the log_prob for each distribution_fn evaluated at each corresponding value.

log_survival_function

View source

log_survival_function(
    value, name='log_survival_function', **kwargs
)

Log survival function.

Given random variable X, the survival function is defined:

log_survival_function(x) = Log[ P[X > x] ]
                         = Log[ 1 - P[X <= x] ]
                         = Log[ 1 - cdf(x) ]

Typically, different numerical approximations can be used for the log survival function, which are more accurate than 1 - cdf(x) when x >> 1.

Args:

  • value: float or double Tensor.
  • name: Python str prepended to names of ops created by this function.
  • **kwargs: Named arguments forwarded to subclass implementation.

Returns:

Tensor of shape sample_shape(x) + self.batch_shape with values of type self.dtype.

mean

View source

mean(
    name='mean', **kwargs
)

Mean.

mode

View source

mode(
    name='mode', **kwargs
)

Mode.

param_shapes

View source

@classmethod
param_shapes(
    cls, sample_shape, name='DistributionParamShapes'
)

Shapes of parameters given the desired shape of a call to sample().

This is a class method that describes what key/value arguments are required to instantiate the given Distribution so that a particular shape is returned for that instance's call to sample().

Subclasses should override class method _param_shapes.

Args:

  • sample_shape: Tensor or python list/tuple. Desired shape of a call to sample().
  • name: name to prepend ops with.

Returns:

dict of parameter name to Tensor shapes.

param_static_shapes

View source

@classmethod
param_static_shapes(
    cls, sample_shape
)

param_shapes with static (i.e. TensorShape) shapes.

This is a class method that describes what key/value arguments are required to instantiate the given Distribution so that a particular shape is returned for that instance's call to sample(). Assumes that the sample's shape is known statically.

Subclasses should override class method _param_shapes to return constant-valued tensors when constant values are fed.

Args:

  • sample_shape: TensorShape or python list/tuple. Desired shape of a call to sample().

Returns:

dict of parameter name to TensorShape.

Raises:

  • ValueError: if sample_shape is a TensorShape and is not fully defined.

prob

View source

prob(
    *args, **kwargs
)

Probability density/mass function.

The measure methods of `JointDistribution` (`log_prob`, `prob`, etc.)
can be called either by passing a single structure of tensors or by using
named args for each part of the joint distribution state. For example,
jd = tfd.JointDistributionSequential([
    tfd.Normal(0., 1.),
    lambda z: tfd.Normal(z, 1.)
], validate_args=True)
jd.dtype
# ==> [tf.float32, tf.float32]
z, x = sample = jd.sample()
# The following calling styles are all permissable and produce the exactly
# the same output.
assert (jd.prob(sample) ==
        jd.prob(value=sample) ==
        jd.prob(z, x) ==
        jd.prob(z=z, x=x) ==
        jd.prob(z, x=x))

# These calling possibilities also imply that one can also use `*`
# expansion, if `sample` is a sequence:
jd.prob(*sample)
# and similarly, if `sample` is a map, one can use `**` expansion:
jd.prob(**sample)
`JointDistribution` component distributions names are resolved via
`jd._flat_resolve_names()`, which is implemented by each `JointDistribution`
subclass (see subclass documentation for details). Generally, for components
where a name was provided---
either explicitly as the `name` argument to a distribution or as a key in a
dict-valued JointDistribution, or implicitly, e.g., by the argument name of
a `JointDistributionSequential` distribution-making function---the provided
name will be used. Otherwise the component will receive a dummy name; these
may change without warning and should not be relied upon.

Note: not all `JointDistribution` subclasses support all calling styles;
for example, `JointDistributionNamed` does not support positional arguments
(aka "unnamed arguments") unless the provided model specifies an ordering of
variables (i.e., is an `collections.OrderedDict` or `collections.namedtuple`
rather than a plain `dict`).

Note: care is taken to resolve any potential ambiguity---this is generally
possible by inspecting the structure of the provided argument and "aligning"
it to the joint distribution output structure (defined by `jd.dtype`). For
example,
trivial_jd = tfd.JointDistributionSequential([tfd.Exponential(1.)])
trivial_jd.dtype  # => [tf.float32]
trivial_jd.prob([4.])
# ==> Tensor with shape `[]`.
prob = trivial_jd.prob(4.)
# ==> Tensor with shape `[]`.
Notice that in the first call, `[4.]` is interpreted as a list of one
scalar while in the second call the input is a scalar. Hence both inputs
result in identical scalar outputs. If we wanted to pass an explicit
vector to the `Exponential` component---creating a vector-shaped batch
of `prob`s---we could instead write
`trivial_jd.prob(np.array([4]))`.

Args:
  *args: Positional arguments: a `value` structure or component values
    (see above).
  **kwargs: Keyword arguments: a `value` structure or component values
    (see above). May also include `name`, specifying a Python string name
    for ops generated by this method.

Returns:

  • prob: a Tensor of shape sample_shape(x) + self.batch_shape with values of type self.dtype.

prob_parts

View source

prob_parts(
    value, name='prob_parts'
)

Log probability density/mass function.

Args:

  • value: list of Tensors in distribution_fn order for which we compute the prob_parts and to parameterize other ("downstream") distributions.
  • name: name prepended to ops created by this function. Default value: "prob_parts".

Returns:

  • prob_parts: a tuple of Tensors representing the prob for each distribution_fn evaluated at each corresponding value.

quantile

View source

quantile(
    value, name='quantile', **kwargs
)

Quantile function. Aka 'inverse cdf' or 'percent point function'.

Given random variable X and p in [0, 1], the quantile is:

quantile(p) := x such that P[X <= x] == p

Args:

  • value: float or double Tensor.
  • name: Python str prepended to names of ops created by this function.
  • **kwargs: Named arguments forwarded to subclass implementation.

Returns:

  • quantile: a Tensor of shape sample_shape(x) + self.batch_shape with values of type self.dtype.

sample

View source

sample(
    sample_shape=(), seed=None, name='sample', **kwargs
)

Generate samples of the specified shape.

Note that a call to sample() without arguments will generate a single sample.

Args:

  • sample_shape: 0D or 1D int32 Tensor. Shape of the generated samples.
  • seed: Python integer or tfp.util.SeedStream instance, for seeding PRNG.
  • name: name to give to the op.
  • **kwargs: Named arguments forwarded to subclass implementation.

Returns:

  • samples: a Tensor with prepended dimensions sample_shape.

sample_distributions

View source

sample_distributions(
    sample_shape=(), seed=None, value=None, name='sample_distributions'
)

Generate samples and the (random) distributions.

Note that a call to sample() without arguments will generate a single sample.

Args:

  • sample_shape: 0D or 1D int32 Tensor. Shape of the generated samples.
  • seed: Python integer seed for generating random numbers.
  • value: list of Tensors in distribution_fn order to use to parameterize other ("downstream") distribution makers. Default value: None (i.e., draw a sample from each distribution).
  • name: name prepended to ops created by this function. Default value: "sample_distributions".

Returns:

  • distributions: a tuple of Distribution instances for each of distribution_fn.
  • samples: a tuple of Tensors with prepended dimensions sample_shape for each of distribution_fn.

stddev

View source

stddev(
    name='stddev', **kwargs
)

Standard deviation.

Standard deviation is defined as,

stddev = E[(X - E[X])**2]**0.5

where X is the random variable associated with this distribution, E denotes expectation, and stddev.shape = batch_shape + event_shape.

Args:

  • name: Python str prepended to names of ops created by this function.
  • **kwargs: Named arguments forwarded to subclass implementation.

Returns:

  • stddev: Floating-point Tensor with shape identical to batch_shape + event_shape, i.e., the same shape as self.mean().

survival_function

View source

survival_function(
    value, name='survival_function', **kwargs
)

Survival function.

Given random variable X, the survival function is defined:

survival_function(x) = P[X > x]
                     = 1 - P[X <= x]
                     = 1 - cdf(x).

Args:

  • value: float or double Tensor.
  • name: Python str prepended to names of ops created by this function.
  • **kwargs: Named arguments forwarded to subclass implementation.

Returns:

Tensor of shape sample_shape(x) + self.batch_shape with values of type self.dtype.

variance

View source

variance(
    name='variance', **kwargs
)

Variance.

Variance is defined as,

Var = E[(X - E[X])**2]

where X is the random variable associated with this distribution, E denotes expectation, and Var.shape = batch_shape + event_shape.

Args:

  • name: Python str prepended to names of ops created by this function.
  • **kwargs: Named arguments forwarded to subclass implementation.

Returns:

  • variance: Floating-point Tensor with shape identical to batch_shape + event_shape, i.e., the same shape as self.mean().