# tfp.experimental.substrates.numpy.distributions.MultivariateStudentTLinearOperator

The [Multivariate Student's t-distribution](

Inherits From: `Distribution`

https://en.wikipedia.org/wiki/Multivariate_t-distribution) on `R^k`.

#### Mathematical Details

The probability density function (pdf) is,

``````pdf(x; df, loc, Sigma) = (1 + ||y||**2 / df)**(-0.5 (df + k)) / Z
where,
y = inv(Sigma) (x - loc)
Z = abs(det(Sigma)) sqrt(df pi)**k Gamma(0.5 df) / Gamma(0.5 (df + k))
``````

where:

• `df` is a positive scalar.
• `loc` is a vector in `R^k`,
• `Sigma` is a positive definite `shape' matrix in`R^{k x k}```, parameterized as```scale @ scale.T` in this class,
• `Z` denotes the normalization constant, and,
• `||y||**2` denotes the squared Euclidean norm of `y`.

The Multivariate Student's t-distribution distribution is a member of the location-scale family, i.e., it can be constructed as,

``````X ~ MultivariateT(loc=0, scale=1)   # Identity scale, zero shift.
Y = scale @ X + loc
``````

#### Examples

``````tfd = tfp.distributions

# Initialize a single 3-variate Student's t.
df = 3.
loc = [1., 2, 3]
scale = [[ 0.6,  0. ,  0. ],
[ 0.2,  0.5,  0. ],
[ 0.1, -0.3,  0.4]]
# ==> [[ 0.36,  0.12,  0.06],
#      [ 0.12,  0.29, -0.13],
#      [ 0.06, -0.13,  0.26]]

mvt = tfd.MultivariateStudentTLinearOperator(
df=df,
loc=loc,
scale=tf.linalg.LinearOperatorLowerTriangular(scale))

# Covariance is closely related to the sigma matrix (for df=3, it is 3x of the
# sigma matrix).

mvt.covariance().eval()
# ==> [[ 1.08,  0.36,  0.18],
#      [ 0.36,  0.87, -0.39],
#      [ 0.18, -0.39,  0.78]]

# Compute the pdf of an`R^3` observation; return a scalar.
mvt.prob([-1., 0, 1]).eval()  # shape: []

<!-- Tabular view -->
<table class="responsive fixed orange">
<colgroup><col width="214px"><col></colgroup>

<tr>
<td>
`df`
</td>
<td>
A positive floating-point `Tensor`. Has shape `[B1, ..., Bb]` where `b
>= 0`.
</td>
</tr><tr>
<td>
`loc`
</td>
<td>
Floating-point `Tensor`. Has shape `[B1, ..., Bb, k]` where `k` is
the event size.
</td>
</tr><tr>
<td>
`scale`
</td>
<td>
Instance of `LinearOperator` with a floating `dtype` and shape
`[B1, ..., Bb, k, k]`.
</td>
</tr><tr>
<td>
`validate_args`
</td>
<td>
Python `bool`, default `False`. Whether to validate input
with asserts. If `validate_args` is `False`, and the inputs are invalid,
correct behavior is not guaranteed.
</td>
</tr><tr>
<td>
`allow_nan_stats`
</td>
<td>
Python `bool`, default `True`. If `False`, raise an
exception if a statistic (e.g. mean/variance/etc...) is undefined for
any batch member If `True`, batch members with valid parameters leading
to undefined statistics will return NaN for this statistic.
</td>
</tr><tr>
<td>
`name`
</td>
<td>
The name to give Ops created by the initializer.
</td>
</tr>
</table>

<!-- Tabular view -->
<table class="responsive fixed orange">
<colgroup><col width="214px"><col></colgroup>

<tr>
<td>
`TypeError`
</td>
<td>
if not `scale.dtype.is_floating`.
</td>
</tr><tr>
<td>
`ValueError`
</td>
<td>
if not `scale.is_non_singular`.
</td>
</tr>
</table>

<!-- Tabular view -->
<table class="responsive fixed orange">
<colgroup><col width="214px"><col></colgroup>

<tr>
<td>
`allow_nan_stats`
</td>
<td>
Python `bool` describing behavior when a stat is undefined.

Stats return +/- infinity when it makes sense. E.g., the variance of a
Cauchy distribution is infinity. However, sometimes the statistic is
undefined, e.g., if a distribution's pdf does not achieve a maximum within
the support of the distribution, the mode is undefined. If the mean is
undefined, then by definition the variance is undefined. E.g. the mean for
Student's T for df = 1 is undefined (no clear way to say it is either + or -
infinity), so the variance = E[(X - mean)**2] is also undefined.
</td>
</tr><tr>
<td>
`batch_shape`
</td>
<td>
Shape of a single sample from a single event index as a `TensorShape`.

May be partially defined or unknown.

The batch dimensions are indexes into independent, non-identical
parameterizations of this distribution.
</td>
</tr><tr>
<td>
`df`
</td>
<td>
The degrees of freedom of the distribution.

This controls the degrees of freedom of the distribution. The tails of the
distribution get more heavier the smaller `df` is. As `df` goes to
infinitiy, the distribution approaches the Multivariate Normal with the same
`loc` and `scale`.
</td>
</tr><tr>
<td>
`dtype`
</td>
<td>
The `DType` of `Tensor`s handled by this `Distribution`.
</td>
</tr><tr>
<td>
`event_shape`
</td>
<td>
Shape of a single sample from a single batch as a `TensorShape`.

May be partially defined or unknown.
</td>
</tr><tr>
<td>
`loc`
</td>
<td>
The location parameter of the distribution.

`loc` applies an elementwise shift to the distribution.

```none
X ~ MultivariateT(loc=0, scale=1)   # Identity scale, zero shift.
Y = scale @ X + loc
``````

`name` Name prepended to all ops created by this `Distribution`. `parameters` Dictionary of parameters used to instantiate this `Distribution`. `reparameterization_type` Describes how samples from the distribution are reparameterized.

Currently this is one of the static instances `tfd.FULLY_REPARAMETERIZED` or `tfd.NOT_REPARAMETERIZED`. `scale` The scale parameter of the distribution.

`scale` applies an affine scale to the distribution.

``````X ~ MultivariateT(loc=0, scale=1)   # Identity scale, zero shift.
Y = scale @ X + loc
``````

`trainable_variables`

`validate_args` Python `bool` indicating possibly expensive checks are enabled. `variables`

## Methods

### `batch_shape_tensor`

View source

Shape of a single sample from a single event index as a 1-D `Tensor`.

The batch dimensions are indexes into independent, non-identical parameterizations of this distribution.

Args
`name` name to give to the op

Returns
`batch_shape` `Tensor`.

### `cdf`

View source

Cumulative distribution function.

Given random variable `X`, the cumulative distribution function `cdf` is:

``````cdf(x) := P[X <= x]
``````

Args
`value` `float` or `double` `Tensor`.
`name` Python `str` prepended to names of ops created by this function.
`**kwargs` Named arguments forwarded to subclass implementation.

Returns
`cdf` a `Tensor` of shape `sample_shape(x) + self.batch_shape` with values of type `self.dtype`.

### `copy`

View source

Creates a deep copy of the distribution.

Args
`**override_parameters_kwargs` String/value dictionary of initialization arguments to override with new values.

Returns
`distribution` A new instance of `type(self)` initialized from the union of self.parameters and override_parameters_kwargs, i.e., `dict(self.parameters, **override_parameters_kwargs)`.

### `covariance`

View source

Covariance.

Covariance is (possibly) defined only for non-scalar-event distributions.

For example, for a length-`k`, vector-valued distribution, it is calculated as,

``````Cov[i, j] = Covariance(X_i, X_j) = E[(X_i - E[X_i]) (X_j - E[X_j])]
``````

where `Cov` is a (batch of) `k x k` matrix, `0 <= (i, j) < k`, and `E` denotes expectation.

Alternatively, for non-vector, multivariate distributions (e.g., matrix-valued, Wishart), `Covariance` shall return a (batch of) matrices under some vectorization of the events, i.e.,

``````Cov[i, j] = Covariance(Vec(X)_i, Vec(X)_j) = [as above]
``````

where `Cov` is a (batch of) `k' x k'` matrices, `0 <= (i, j) < k' = reduce_prod(event_shape)`, and `Vec` is some function mapping indices of this distribution's event dimensions to indices of a length-`k'` vector.

Additional documentation from `MultivariateStudentTLinearOperator`:

The covariance for Multivariate Student's t equals

``````scale @ scale.T * df / (df - 2), when df > 2
infinity, when 1 < df <= 2
NaN, when df <= 1
``````

If `self.allow_nan_stats=False`, then an exception will be raised rather than returning `NaN`.

Args
`name` Python `str` prepended to names of ops created by this function.
`**kwargs` Named arguments forwarded to subclass implementation.

Returns
`covariance` Floating-point `Tensor` with shape `[B1, ..., Bn, k', k']` where the first `n` dimensions are batch coordinates and `k' = reduce_prod(self.event_shape)`.

### `cross_entropy`

View source

Computes the (Shannon) cross entropy.

Denote this distribution (`self`) by `P` and the `other` distribution by `Q`. Assuming `P, Q` are absolutely continuous with respect to one another and permit densities `p(x) dr(x)` and `q(x) dr(x)`, (Shannon) cross entropy is defined as:

``````H[P, Q] = E_p[-log q(X)] = -int_F p(x) log q(x) dr(x)
``````

where `F` denotes the support of the random variable `X ~ P`.

Args
`other` `tfp.distributions.Distribution` instance.
`name` Python `str` prepended to names of ops created by this function.

Returns
`cross_entropy` `self.dtype` `Tensor` with shape `[B1, ..., Bn]` representing `n` different calculations of (Shannon) cross entropy.

### `entropy`

View source

Shannon entropy in nats.

### `event_shape_tensor`

View source

Shape of a single sample from a single batch as a 1-D int32 `Tensor`.

Args
`name` name to give to the op

Returns
`event_shape` `Tensor`.

### `is_scalar_batch`

View source

Indicates that `batch_shape == []`.

Args
`name` Python `str` prepended to names of ops created by this function.

Returns
`is_scalar_batch` `bool` scalar `Tensor`.

### `is_scalar_event`

View source

Indicates that `event_shape == []`.

Args
`name` Python `str` prepended to names of ops created by this function.

Returns
`is_scalar_event` `bool` scalar `Tensor`.

### `kl_divergence`

View source

Computes the Kullback--Leibler divergence.

Denote this distribution (`self`) by `p` and the `other` distribution by `q`. Assuming `p, q` are absolutely continuous with respect to reference measure `r`, the KL divergence is defined as:

``````KL[p, q] = E_p[log(p(X)/q(X))]
= -int_F p(x) log q(x) dr(x) + int_F p(x) log p(x) dr(x)
= H[p, q] - H[p]
``````

where `F` denotes the support of the random variable `X ~ p`, `H[., .]` denotes (Shannon) cross entropy, and `H[.]` denotes (Shannon) entropy.

Args
`other` `tfp.distributions.Distribution` instance.
`name` Python `str` prepended to names of ops created by this function.

Returns
`kl_divergence` `self.dtype` `Tensor` with shape `[B1, ..., Bn]` representing `n` different calculations of the Kullback-Leibler divergence.

### `log_cdf`

View source

Log cumulative distribution function.

Given random variable `X`, the cumulative distribution function `cdf` is:

``````log_cdf(x) := Log[ P[X <= x] ]
``````

Often, a numerical approximation can be used for `log_cdf(x)` that yields a more accurate answer than simply taking the logarithm of the `cdf` when `x << -1`.

Args
`value` `float` or `double` `Tensor`.
`name` Python `str` prepended to names of ops created by this function.
`**kwargs` Named arguments forwarded to subclass implementation.

Returns
`logcdf` a `Tensor` of shape `sample_shape(x) + self.batch_shape` with values of type `self.dtype`.

### `log_prob`

View source

Log probability density/mass function.

Args
`value` `float` or `double` `Tensor`.
`name` Python `str` prepended to names of ops created by this function.
`**kwargs` Named arguments forwarded to subclass implementation.

Returns
`log_prob` a `Tensor` of shape `sample_shape(x) + self.batch_shape` with values of type `self.dtype`.

### `log_survival_function`

View source

Log survival function.

Given random variable `X`, the survival function is defined:

``````log_survival_function(x) = Log[ P[X > x] ]
= Log[ 1 - P[X <= x] ]
= Log[ 1 - cdf(x) ]
``````

Typically, different numerical approximations can be used for the log survival function, which are more accurate than `1 - cdf(x)` when `x >> 1`.

Args
`value` `float` or `double` `Tensor`.
`name` Python `str` prepended to names of ops created by this function.
`**kwargs` Named arguments forwarded to subclass implementation.

Returns
`Tensor` of shape `sample_shape(x) + self.batch_shape` with values of type `self.dtype`.

### `mean`

View source

Mean.

Additional documentation from `MultivariateStudentTLinearOperator`:

The mean of Student's T equals `loc` if `df > 1`, otherwise it is `NaN`. If `self.allow_nan_stats=False`, then an exception will be raised rather than returning `NaN`.

View source

Mode.

### `param_shapes`

View source

Shapes of parameters given the desired shape of a call to `sample()`.

This is a class method that describes what key/value arguments are required to instantiate the given `Distribution` so that a particular shape is returned for that instance's call to `sample()`.

Subclasses should override class method `_param_shapes`.

Args
`sample_shape` `Tensor` or python list/tuple. Desired shape of a call to `sample()`.
`name` name to prepend ops with.

Returns
`dict` of parameter name to `Tensor` shapes.

### `param_static_shapes`

View source

param_shapes with static (i.e. `TensorShape`) shapes.

This is a class method that describes what key/value arguments are required to instantiate the given `Distribution` so that a particular shape is returned for that instance's call to `sample()`. Assumes that the sample's shape is known statically.

Subclasses should override class method `_param_shapes` to return constant-valued tensors when constant values are fed.

Args
`sample_shape` `TensorShape` or python list/tuple. Desired shape of a call to `sample()`.

Returns
`dict` of parameter name to `TensorShape`.

Raises
`ValueError` if `sample_shape` is a `TensorShape` and is not fully defined.

### `prob`

View source

Probability density/mass function.

Args
`value` `float` or `double` `Tensor`.
`name` Python `str` prepended to names of ops created by this function.
`**kwargs` Named arguments forwarded to subclass implementation.

Returns
`prob` a `Tensor` of shape `sample_shape(x) + self.batch_shape` with values of type `self.dtype`.

### `quantile`

View source

Quantile function. Aka 'inverse cdf' or 'percent point function'.

Given random variable `X` and `p in [0, 1]`, the `quantile` is:

``````quantile(p) := x such that P[X <= x] == p
``````

Args
`value` `float` or `double` `Tensor`.
`name` Python `str` prepended to names of ops created by this function.
`**kwargs` Named arguments forwarded to subclass implementation.

Returns
`quantile` a `Tensor` of shape `sample_shape(x) + self.batch_shape` with values of type `self.dtype`.

### `sample`

View source

Generate samples of the specified shape.

Note that a call to `sample()` without arguments will generate a single sample.

Args
`sample_shape` 0D or 1D `int32` `Tensor`. Shape of the generated samples.
`seed` Python integer or `tfp.util.SeedStream` instance, for seeding PRNG.
`name` name to give to the op.
`**kwargs` Named arguments forwarded to subclass implementation.

Returns
`samples` a `Tensor` with prepended dimensions `sample_shape`.

### `stddev`

View source

Standard deviation.

Standard deviation is defined as,

``````stddev = E[(X - E[X])**2]**0.5
``````

where `X` is the random variable associated with this distribution, `E` denotes expectation, and `stddev.shape = batch_shape + event_shape`.

Additional documentation from `MultivariateStudentTLinearOperator`:

The standard deviation for Student's T equals

``````sqrt(diag(scale @ scale.T)) * df / (df - 2), when df > 2
infinity, when 1 < df <= 2
NaN, when df <= 1
``````

Args
`name` Python `str` prepended to names of ops created by this function.
`**kwargs` Named arguments forwarded to subclass implementation.

Returns
`stddev` Floating-point `Tensor` with shape identical to `batch_shape + event_shape`, i.e., the same shape as `self.mean()`.

### `survival_function`

View source

Survival function.

Given random variable `X`, the survival function is defined:

``````survival_function(x) = P[X > x]
= 1 - P[X <= x]
= 1 - cdf(x).
``````

Args
`value` `float` or `double` `Tensor`.
`name` Python `str` prepended to names of ops created by this function.
`**kwargs` Named arguments forwarded to subclass implementation.

Returns
`Tensor` of shape `sample_shape(x) + self.batch_shape` with values of type `self.dtype`.

### `variance`

View source

Variance.

Variance is defined as,

``````Var = E[(X - E[X])**2]
``````

where `X` is the random variable associated with this distribution, `E` denotes expectation, and `Var.shape = batch_shape + event_shape`.

Additional documentation from `MultivariateStudentTLinearOperator`:

The variance for Student's T equals

``````diag(scale @ scale.T) * df / (df - 2), when df > 2
infinity, when 1 < df <= 2
NaN, when df <= 1
``````

If `self.allow_nan_stats=False`, then an exception will be raised rather than returning `NaN`.

Args
`name` Python `str` prepended to names of ops created by this function.
`**kwargs` Named arguments forwarded to subclass implementation.

Returns
`variance` Floating-point `Tensor` with shape identical to `batch_shape + event_shape`, i.e., the same shape as `self.mean()`.

### `__getitem__`

View source

Slices the batch axes of this distribution, returning a new instance.

``````b = tfd.Bernoulli(logits=tf.zeros([3, 5, 7, 9]))
b.batch_shape  # => [3, 5, 7, 9]
b2 = b[:, tf.newaxis, ..., -2:, 1::2]
b2.batch_shape  # => [3, 1, 5, 2, 4]

x = tf.random.stateless_normal([5, 3, 2, 2])
cov = tf.matmul(x, x, transpose_b=True)
chol = tf.cholesky(cov)
loc = tf.random.stateless_normal([4, 1, 3, 1])
mvn = tfd.MultivariateNormalTriL(loc, chol)
mvn.batch_shape  # => [4, 5, 3]
mvn.event_shape  # => [2]
mvn2 = mvn[:, 3:, ..., ::-1, tf.newaxis]
mvn2.batch_shape  # => [4, 2, 3, 1]
mvn2.event_shape  # => [2]
``````

Args
`slices` slices from the [] operator

Returns
`dist` A new `tfd.Distribution` instance with sliced parameters.

View source