View source on GitHub |

Compute the `q`

-th percentile(s) of `x`

. (deprecated arguments)

```
tfp.experimental.substrates.numpy.stats.percentile(
x, q, axis=None, interpolation=None, keepdims=False, validate_args=False,
preserve_gradients=True, keep_dims=None, name=None
)
```

Given a vector `x`

, the `q`

-th percentile of `x`

is the value `q / 100`

of the
way from the minimum to the maximum in a sorted copy of `x`

.

The values and distances of the two nearest neighbors as well as the
`interpolation`

parameter will determine the percentile if the normalized
ranking does not match the location of `q`

exactly.

This function is the same as the median if `q = 50`

, the same as the minimum
if `q = 0`

and the same as the maximum if `q = 100`

.

Multiple percentiles can be computed at once by using `1-D`

vector `q`

.
Dimension zero of the returned `Tensor`

will index the different percentiles.

Compare to `numpy.percentile`

.

#### Args:

: Numeric`x`

`N-D`

`Tensor`

with`N > 0`

. If`axis`

is not`None`

,`x`

must have statically known number of dimensions.: Scalar or vector`q`

`Tensor`

with values in`[0, 100]`

. The percentile(s).: Optional`axis`

`0-D`

or`1-D`

integer`Tensor`

with constant values. The axis that index independent samples over which to return the desired percentile. If`None`

(the default), treat every dimension as a sample dimension, returning a scalar.: {'nearest', 'linear', 'lower', 'higher', 'midpoint'}. Default value: 'nearest'. This specifies the interpolation method to use when the desired quantile lies between two data points`interpolation`

`i < j`

:- linear: i + (j - i) * fraction, where fraction is the fractional part of the index surrounded by i and j.
- lower:
`i`

. - higher:
`j`

. - nearest:
`i`

or`j`

, whichever is nearest. - midpoint: (i + j) / 2.
`linear`

and`midpoint`

interpolation do not work with integer dtypes.

: Python`keepdims`

`bool`

. If`True`

, the last dimension is kept with size 1 If`False`

, the last dimension is removed from the output shape.: Whether to add runtime checks of argument validity. If False, and arguments are incorrect, correct behavior is not guaranteed.`validate_args`

: Python`preserve_gradients`

`bool`

. If`True`

, ensure that gradient w.r.t the percentile`q`

is preserved in the case of linear interpolation. If`False`

, the gradient will be (incorrectly) zero when`q`

corresponds to a point in`x`

.: deprecated, use keepdims instead.`keep_dims`

: A Python string name to give this`name`

`Op`

. Default is 'percentile'

#### Returns:

A `(rank(q) + N - len(axis))`

dimensional `Tensor`

of same dtype as `x`

, or,
if `axis`

is `None`

, a `rank(q)`

`Tensor`

. The first `rank(q)`

dimensions
index quantiles for different values of `q`

.

#### Raises:

: If argument 'interpolation' is not an allowed type.`ValueError`

: If interpolation type not compatible with`ValueError`

`dtype`

.

#### Examples

```
# Get 30th percentile with default ('nearest') interpolation.
x = [1., 2., 3., 4.]
tfp.stats.percentile(x, q=30.)
==> 2.0
# Get 30th percentile with 'linear' interpolation.
x = [1., 2., 3., 4.]
tfp.stats.percentile(x, q=30., interpolation='linear')
==> 1.9
# Get 30th and 70th percentiles with 'lower' interpolation
x = [1., 2., 3., 4.]
tfp.stats.percentile(x, q=[30., 70.], interpolation='lower')
==> [1., 3.]
# Get 100th percentile (maximum). By default, this is computed over every dim
x = [[1., 2.]
[3., 4.]]
tfp.stats.percentile(x, q=100.)
==> 4.
# Treat the leading dim as indexing samples, and find the 100th quantile (max)
# over all such samples.
x = [[1., 2.]
[3., 4.]]
tfp.stats.percentile(x, q=100., axis=[0])
==> [3., 4.]
```