- คำอธิบาย :
Franka สำรวจครัวของเล่น
หน้าแรก : https://human-world-model.github.io/
ซอร์สโค้ด :
tfds.robotics.rtx.CmuFrankaExplorationDatasetConvertedExternallyToRlds
รุ่น :
-
0.1.0
(ค่าเริ่มต้น): การเปิดตัวครั้งแรก
-
ขนาดการดาวน์โหลด :
Unknown size
ขนาดชุดข้อมูล :
602.24 MiB
แคชอัตโนมัติ ( เอกสาร ): No
แยก :
แยก | ตัวอย่าง |
---|---|
'train' | 199 |
- โครงสร้างคุณสมบัติ :
FeaturesDict({
'episode_metadata': FeaturesDict({
'file_path': Text(shape=(), dtype=string),
}),
'steps': Dataset({
'action': Tensor(shape=(8,), dtype=float32, description=Robot action, consists of [end effector position3x, end effector orientation3x, gripper action1x, episode termination1x].),
'discount': Scalar(shape=(), dtype=float32, description=Discount if provided, default to 1.),
'is_first': bool,
'is_last': bool,
'is_terminal': bool,
'language_embedding': Tensor(shape=(512,), dtype=float32, description=Kona language embedding. See https://tfhub.dev/google/universal-sentence-encoder-large/5),
'language_instruction': Text(shape=(), dtype=string),
'observation': FeaturesDict({
'highres_image': Image(shape=(480, 640, 3), dtype=uint8, description=High resolution main camera observation),
'image': Image(shape=(64, 64, 3), dtype=uint8, description=Main camera RGB observation.),
}),
'reward': Scalar(shape=(), dtype=float32, description=Reward if provided, 1 on final step for demos.),
'structured_action': Tensor(shape=(8,), dtype=float32, description=Structured action, consisting of hybrid affordance and end-effector control, described in Structured World Models from Human Videos.),
}),
})
- เอกสารคุณสมบัติ :
คุณสมบัติ | ระดับ | รูปร่าง | ประเภทD | คำอธิบาย |
---|---|---|---|---|
คุณสมบัติDict | ||||
ตอนที่_ข้อมูลเมตา | คุณสมบัติDict | |||
ตอนที่_metadata/file_path | ข้อความ | เชือก | เส้นทางไปยังไฟล์ข้อมูลต้นฉบับ | |
ขั้นตอน | ชุดข้อมูล | |||
ขั้นตอน/การดำเนินการ | เทนเซอร์ | (8,) | ลอย32 | การทำงานของหุ่นยนต์ ประกอบด้วย [ตำแหน่งเอนด์เอฟเฟกต์ 3x, การวางแนวเอฟเฟกต์เอนด์ 3x, การทำงานของกริปเปอร์ 1x, การยุติตอน 1x] |
ขั้นตอน/ส่วนลด | สเกลาร์ | ลอย32 | ส่วนลดหากมีให้ ค่าเริ่มต้นคือ 1 | |
ขั้นตอน/is_first | เทนเซอร์ | บูล | ||
ขั้นตอน/is_last | เทนเซอร์ | บูล | ||
ขั้นตอน/is_terminal | เทนเซอร์ | บูล | ||
ขั้นตอน/ภาษา_embedding | เทนเซอร์ | (512,) | ลอย32 | การฝังภาษาโคน่า ดู https://tfhub.dev/google/universal-sentence-encoder-large/5 |
ขั้นตอน/Language_instruction | ข้อความ | เชือก | การสอนภาษา. | |
ขั้นตอน/การสังเกต | คุณสมบัติDict | |||
ขั้นตอน/การสังเกต/highres_image | ภาพ | (480, 640, 3) | uint8 | การสังเกตด้วยกล้องหลักที่มีความละเอียดสูง |
ขั้นตอน/การสังเกต/ภาพ | ภาพ | (64, 64, 3) | uint8 | การสังเกต RGB ของกล้องหลัก |
ขั้นตอน/รางวัล | สเกลาร์ | ลอย32 | รางวัลหากมีให้ 1 ในขั้นตอนสุดท้ายสำหรับการสาธิต | |
ขั้นตอน/โครงสร้าง_การกระทำ | เทนเซอร์ | (8,) | ลอย32 | การดำเนินการที่มีโครงสร้าง ประกอบด้วยการจ่ายแบบไฮบริดและการควบคุมเอฟเฟกต์ปลายทาง อธิบายไว้ในแบบจำลองโลกที่มีโครงสร้างจากวิดีโอของมนุษย์ |
คีย์ภายใต้การดูแล (ดู
as_supervised
doc ):None
รูปภาพ ( tfds.show_examples ): ไม่รองรับ
ตัวอย่าง ( tfds.as_dataframe ):
- การอ้างอิง :
@inproceedings{mendonca2023structured,
title={Structured World Models from Human Videos},
author={Mendonca, Russell and Bahl, Shikhar and Pathak, Deepak},
journal={RSS},
year={2023}
}