Missed TensorFlow World? Check out the recap. Learn more

tf.RaggedTensor

TensorFlow 1 version View source on GitHub

Class RaggedTensor

Represents a ragged tensor.

Aliases:

Used in the guide:

Used in the tutorials:

A RaggedTensor is a tensor with one or more ragged dimensions, which are dimensions whose slices may have different lengths. For example, the inner (column) dimension of rt=[[3, 1, 4, 1], [], [5, 9, 2], [6], []] is ragged, since the column slices (rt[0, :], ..., rt[4, :]) have different lengths. Dimensions whose slices all have the same length are called uniform dimensions. The outermost dimension of a RaggedTensor is always uniform, since it consists of a single slice (and so there is no possibility for differing slice lengths).

The total number of dimensions in a RaggedTensor is called its rank, and the number of ragged dimensions in a RaggedTensor is called its ragged-rank. A RaggedTensor's ragged-rank is fixed at graph creation time: it can't depend on the runtime values of Tensors, and can't vary dynamically for different session runs.

Potentially Ragged Tensors

Many ops support both Tensors and RaggedTensors. The term "potentially ragged tensor" may be used to refer to a tensor that might be either a Tensor or a RaggedTensor. The ragged-rank of a Tensor is zero.

Documenting RaggedTensor Shapes

When documenting the shape of a RaggedTensor, ragged dimensions can be indicated by enclosing them in parentheses. For example, the shape of a 3-D RaggedTensor that stores the fixed-size word embedding for each word in a sentence, for each sentence in a batch, could be written as [num_sentences, (num_words), embedding_size]. The parentheses around (num_words) indicate that dimension is ragged, and that the length of each element list in that dimension may vary for each item.

Component Tensors

Internally, a RaggedTensor consists of a concatenated list of values that are partitioned into variable-length rows. In particular, each RaggedTensor consists of:

  • A values tensor, which concatenates the variable-length rows into a flattened list. For example, the values tensor for [[3, 1, 4, 1], [], [5, 9, 2], [6], []] is [3, 1, 4, 1, 5, 9, 2, 6].

  • A row_splits vector, which indicates how those flattened values are divided into rows. In particular, the values for row rt[i] are stored in the slice rt.values[rt.row_splits[i]:rt.row_splits[i+1]].

Example:

print(tf.RaggedTensor.from_row_splits(
values=[3, 1, 4, 1, 5, 9, 2, 6],
row_splits=[0, 4, 4, 7, 8, 8]))
<tf.RaggedTensor [[3, 1, 4, 1], [], [5, 9, 2], [6], []]>

Alternative Row-Partitioning Schemes

In addition to row_splits, ragged tensors provide support for four other row-partitioning schemes:

  • row_lengths: a vector with shape [nrows], which specifies the length of each row.

  • value_rowids and nrows: value_rowids is a vector with shape [nvals], corresponding one-to-one with values, which specifies each value's row index. In particular, the row rt[row] consists of the values rt.values[j] where value_rowids[j]==row. nrows is an integer scalar that specifies the number of rows in the RaggedTensor. (nrows is used to indicate trailing empty rows.)

  • row_starts: a vector with shape [nrows], which specifies the start offset of each row. Equivalent to row_splits[:-1].

  • row_limits: a vector with shape [nrows], which specifies the stop offset of each row. Equivalent to row_splits[1:].

Example: The following ragged tensors are equivalent, and all represent the nested list [[3, 1, 4, 1], [], [5, 9, 2], [6], []].

values = [3, 1, 4, 1, 5, 9, 2, 6]
rt1 = RaggedTensor.from_row_splits(values, row_splits=[0, 4, 4, 7, 8, 8])
rt2 = RaggedTensor.from_row_lengths(values, row_lengths=[4, 0, 3, 1, 0])
rt3 = RaggedTensor.from_value_rowids(
values, value_rowids=[0, 0, 0, 0, 2, 2, 2, 3], nrows=5)
rt4 = RaggedTensor.from_row_starts(values, row_starts=[0, 4, 4, 7, 8])
rt5 = RaggedTensor.from_row_limits(values, row_limits=[4, 4, 7, 8, 8])

Multiple Ragged Dimensions

RaggedTensors with multiple ragged dimensions can be defined by using a nested RaggedTensor for the values tensor. Each nested RaggedTensor adds a single ragged dimension.

inner_rt = RaggedTensor.from_row_splits(  # =rt1 from above
values=[3, 1, 4, 1, 5, 9, 2, 6], row_splits=[0, 4, 4, 7, 8, 8])
outer_rt = RaggedTensor.from_row_splits(
values=inner_rt, row_splits=[0, 3, 3, 5])
print outer_rt.to_list()
[[[3, 1, 4, 1], [], [5, 9, 2]], [], [[6], []]]
print outer_rt.ragged_rank
2

The factory function RaggedTensor.from_nested_row_splits may be used to construct a RaggedTensor with multiple ragged dimensions directly, by providing a list of row_splits tensors:

RaggedTensor.from_nested_row_splits(
flat_values=[3, 1, 4, 1, 5, 9, 2, 6],
nested_row_splits=([0, 3, 3, 5], [0, 4, 4, 7, 8, 8])).to_list()
[[[3, 1, 4, 1], [], [5, 9, 2]], [], [[6], []]]

Uniform Inner Dimensions

RaggedTensors with uniform inner dimensions can be defined by using a multidimensional Tensor for values.

rt = RaggedTensor.from_row_splits(values=tf.ones([5, 3]),
..                                    row_splits=[0, 2, 5])
print rt.to_list()
[[[1, 1, 1], [1, 1, 1]],
 [[1, 1, 1], [1, 1, 1], [1, 1, 1]]]
 >>> print rt.shape
 (2, ?, 3)

RaggedTensor Shape Restrictions

The shape of a RaggedTensor is currently restricted to have the following form:

  • A single uniform dimension
  • Followed by one or more ragged dimensions
  • Followed by zero or more uniform dimensions.

This restriction follows from the fact that each nested RaggedTensor replaces the uniform outermost dimension of its values with a uniform dimension followed by a ragged dimension.

__init__

View source

__init__(
    values,
    row_splits,
    cached_row_lengths=None,
    cached_value_rowids=None,
    cached_nrows=None,
    internal=False
)

Creates a RaggedTensor with a specified partitioning for values.

This constructor is private -- please use one of the following ops to build RaggedTensors:

Args:

  • values: A potentially ragged tensor of any dtype and shape [nvals, ...].
  • row_splits: A 1-D integer tensor with shape [nrows+1].
  • cached_row_lengths: A 1-D integer tensor with shape [nrows]
  • cached_value_rowids: A 1-D integer tensor with shape [nvals].
  • cached_nrows: A 1-D integer scalar tensor.
  • internal: True if the constructor is being called by one of the factory methods. If false, an exception will be raised.

Raises:

  • TypeError: If a row partitioning tensor has an inappropriate dtype.
  • TypeError: If exactly one row partitioning argument was not specified.
  • ValueError: If a row partitioning tensor has an inappropriate shape.
  • ValueError: If multiple partitioning arguments are specified.
  • ValueError: If nrows is specified but value_rowids is not None.

Properties

dtype

The DType of values in this tensor.

flat_values

The innermost values tensor for this ragged tensor.

Concretely, if rt.values is a Tensor, then rt.flat_values is rt.values; otherwise, rt.flat_values is rt.values.flat_values.

Conceptually, flat_values is the tensor formed by flattening the outermost dimension and all of the ragged dimensions into a single dimension.

rt.flat_values.shape = [nvals] + rt.shape[rt.ragged_rank + 1:] (where nvals is the number of items in the flattened dimensions).

Returns:

A Tensor.

Example:

>>> rt = ragged.constant([[[3, 1, 4, 1], [], [5, 9, 2]], [], [[6], []]])
>>> print rt.flat_values()
tf.Tensor([3, 1, 4, 1, 5, 9, 2, 6])

nested_row_splits

A tuple containing the row_splits for all ragged dimensions.

rt.nested_row_splits is a tuple containing the row_splits tensors for all ragged dimensions in rt, ordered from outermost to innermost. In particular, rt.nested_row_splits = (rt.row_splits,) + value_splits where:

* `value_splits = ()` if `rt.values` is a `Tensor`.
* `value_splits = rt.values.nested_row_splits` otherwise.

Returns:

A tuple of 1-D integer Tensors.

Example:

>>> rt = ragged.constant([[[[3, 1, 4, 1], [], [5, 9, 2]], [], [[6], []]]])
>>> for i, splits in enumerate(rt.nested_row_splits()):
...   print('Splits for dimension %d: %s' % (i+1, splits))
Splits for dimension 1: [0, 1]
Splits for dimension 2: [0, 3, 3, 5]
Splits for dimension 3: [0, 4, 4, 7, 8, 8]

ragged_rank

The number of ragged dimensions in this ragged tensor.

Returns:

A Python int indicating the number of ragged dimensions in this ragged tensor. The outermost dimension is not considered ragged.

row_splits

The row-split indices for this ragged tensor's values.

rt.row_splits specifies where the values for each row begin and end in rt.values. In particular, the values for row rt[i] are stored in the slice rt.values[rt.row_splits[i]:rt.row_splits[i+1]].

Returns:

A 1-D integer Tensor with shape [self.nrows+1]. The returned tensor is non-empty, and is sorted in ascending order. self.row_splits[0] is zero, and self.row_splits[-1] is equal to self.values.shape[0].

Example:

>>> rt = ragged.constant([[3, 1, 4, 1], [], [5, 9, 2], [6], []])
>>> print rt.row_splits  # indices of row splits in rt.values
tf.Tensor([0, 4, 4, 7, 8, 8])

shape

The statically known shape of this ragged tensor.

Returns:

A TensorShape containing the statically known shape of this ragged tensor. Ragged dimensions have a size of None.

Examples:

ragged.constant([[0], [1, 2]]).shape
TensorShape([Dimension(2), Dimension(None)])

ragged.constant([[[0, 1]], [[1, 2], [3, 4]]], ragged_rank=1).shape
TensorShape([Dimension(2), Dimension(None), Dimension(2)

values

The concatenated rows for this ragged tensor.

rt.values is a potentially ragged tensor formed by flattening the two outermost dimensions of rt into a single dimension.

rt.values.shape = [nvals] + rt.shape[2:] (where nvals is the number of items in the outer two dimensions of rt).

rt.ragged_rank = self.ragged_rank - 1

Returns:

A potentially ragged tensor.

Example:

>>> rt = ragged.constant([[3, 1, 4, 1], [], [5, 9, 2], [6], []])
>>> print rt.values
tf.Tensor([3, 1, 4, 1, 5, 9, 2, 6])

Methods

__abs__

View source

__abs__(
    x,
    name=None
)

Computes the absolute value of a tensor.

Given a tensor of integer or floating-point values, this operation returns a tensor of the same type, where each element contains the absolute value of the corresponding element in the input.

Given a tensor x of complex numbers, this operation returns a tensor of type float32 or float64 that is the absolute value of each element in x. All elements in x must be complex numbers of the form \(a + bj\). The absolute value is computed as \( \sqrt{a^2 + b^2}\). For example:

x = tf.constant([[-2.25 + 4.75j], [-3.25 + 5.75j]])
tf.abs(x)  # [5.25594902, 6.60492229]

Args:

  • x: A Tensor or SparseTensor of type float16, float32, float64, int32, int64, complex64 or complex128.
  • name: A name for the operation (optional).

Returns:

A Tensor or SparseTensor the same size, type, and sparsity as x with absolute values. Note, for complex64 or complex128 input, the returned Tensor will be of type float32 or float64, respectively.

If x is a SparseTensor, returns SparseTensor(x.indices, tf.math.abs(x.values, ...), x.dense_shape)

__add__

Defined in generated file: python/ops/gen_math_ops.py

__add__(
    x,
    y,
    name=None
)

Returns x + y element-wise.

NOTE: math.add supports broadcasting. AddN does not. More about broadcasting here

Args:

  • x: A Tensor. Must be one of the following types: bfloat16, half, float32, float64, uint8, int8, int16, int32, int64, complex64, complex128, string.
  • y: A Tensor. Must have the same type as x.
  • name: A name for the operation (optional).

Returns:

A Tensor. Has the same type as x.

__and__

Defined in generated file: python/ops/gen_math_ops.py

__and__(
    x,
    y,
    name=None
)

Returns the truth value of x AND y element-wise.

NOTE: math.logical_and supports broadcasting. More about broadcasting here

Args:

  • x: A Tensor of type bool.
  • y: A Tensor of type bool.
  • name: A name for the operation (optional).

Returns:

A Tensor of type bool.

__bool__

View source

__bool__(_)

Dummy method to prevent a RaggedTensor from being used as a Python bool.

__div__

View source

__div__(
    x,
    y,
    name=None
)

Divides x / y elementwise (using Python 2 division operator semantics). (deprecated)

NOTE: Prefer using the Tensor division operator or tf.divide which obey Python 3 division operator semantics.

This function divides x and y, forcing Python 2 semantics. That is, if x and y are both integers then the result will be an integer. This is in contrast to Python 3, where division with / is always a float while division with // is always an integer.

Args:

  • x: Tensor numerator of real numeric type.
  • y: Tensor denominator of real numeric type.
  • name: A name for the operation (optional).

Returns:

x / y returns the quotient of x and y.

__floordiv__

View source

__floordiv__(
    x,
    y,
    name=None
)

Divides x / y elementwise, rounding toward the most negative integer.

The same as tf.compat.v1.div(x,y) for integers, but uses tf.floor(tf.compat.v1.div(x,y)) for floating point arguments so that the result is always an integer (though possibly an integer represented as floating point). This op is generated by x // y floor division in Python 3 and in Python 2.7 with from __future__ import division.

x and y must have the same type, and the result will have the same type as well.

Args:

  • x: Tensor numerator of real numeric type.
  • y: Tensor denominator of real numeric type.
  • name: A name for the operation (optional).

Returns:

x / y rounded down.

Raises:

  • TypeError: If the inputs are complex.

__ge__

Defined in generated file: python/ops/gen_math_ops.py

__ge__(
    x,
    y,
    name=None
)

Returns the truth value of (x >= y) element-wise.

NOTE: math.greater_equal supports broadcasting. More about broadcasting here

Args:

  • x: A Tensor. Must be one of the following types: float32, float64, int32, uint8, int16, int8, int64, bfloat16, uint16, half, uint32, uint64.
  • y: A Tensor. Must have the same type as x.
  • name: A name for the operation (optional).

Returns:

A Tensor of type bool.

__getitem__

View source

__getitem__(key)

Returns the specified piece of this RaggedTensor.

Supports multidimensional indexing and slicing, with one restriction: indexing into a ragged inner dimension is not allowed. This case is problematic because the indicated value may exist in some rows but not others. In such cases, it's not obvious whether we should (1) report an IndexError; (2) use a default value; or (3) skip that value and return a tensor with fewer rows than we started with. Following the guiding principles of Python ("In the face of ambiguity, refuse the temptation to guess"), we simply disallow this operation.

Any dimensions added by array_ops.newaxis will be ragged if the following dimension is ragged.

Args:

  • self: The RaggedTensor to slice.
  • key: Indicates which piece of the RaggedTensor to return, using standard Python semantics (e.g., negative values index from the end). key may have any of the following types:

    • int constant
    • Scalar integer Tensor
    • slice containing integer constants and/or scalar integer Tensors
    • Ellipsis
    • tf.newaxis
    • tuple containing any of the above (for multidimentional indexing)

Returns:

A Tensor or RaggedTensor object. Values that include at least one ragged dimension are returned as RaggedTensor. Values that include no ragged dimensions are returned as Tensor. See above for examples of expressions that return Tensors vs RaggedTensors.

Raises:

  • ValueError: If key is out of bounds.
  • ValueError: If key is not supported.
  • TypeError: If the indices in key have an unsupported type.

Examples:

# A 2-D ragged tensor with 1 ragged dimension.
rt = ragged.constant([['a', 'b', 'c'], ['d', 'e'], ['f'], ['g']])
rt[0].eval().tolist()       # First row (1-D `Tensor`)
['a', 'b', 'c']
rt[:3].eval().tolist()      # First three rows (2-D RaggedTensor)
[['a', 'b', 'c'], ['d', 'e'], '[f'], [g']]
rt[3, 0].eval().tolist()    # 1st element of 4th row (scalar)
'g'

# A 3-D ragged tensor with 2 ragged dimensions.
rt = ragged.constant([[[1, 2, 3], [4]],
[[5], [], [6]],
[[7]],
[[8, 9], [10]]])
rt[1].eval().tolist()       # Second row (2-D RaggedTensor)
[[5], [], [6]]
rt[3, 0].eval().tolist()    # First element of fourth row (1-D Tensor)
[8, 9]
rt[:, 1:3].eval().tolist()  # Items 1-3 of each row (3-D RaggedTensor)
[[[4]], [[], [6]], [], [[10]]]
rt[:, -1:].eval().tolist()  # Last item of each row (3-D RaggedTensor)
[[[4]], [[6]], [[7]], [[10]]]

__gt__

Defined in generated file: python/ops/gen_math_ops.py

__gt__(
    x,
    y,
    name=None
)

Returns the truth value of (x > y) element-wise.

NOTE: math.greater supports broadcasting. More about broadcasting here

Args:

  • x: A Tensor. Must be one of the following types: float32, float64, int32, uint8, int16, int8, int64, bfloat16, uint16, half, uint32, uint64.
  • y: A Tensor. Must have the same type as x.
  • name: A name for the operation (optional).

Returns:

A Tensor of type bool.

__invert__

Defined in generated file: python/ops/gen_math_ops.py

__invert__(
    x,
    name=None
)

Returns the truth value of NOT x element-wise.

Args:

  • x: A Tensor of type bool.
  • name: A name for the operation (optional).

Returns:

A Tensor of type bool.

__le__

Defined in generated file: python/ops/gen_math_ops.py

__le__(
    x,
    y,
    name=None
)

Returns the truth value of (x <= y) element-wise.

NOTE: math.less_equal supports broadcasting. More about broadcasting here

Args:

  • x: A Tensor. Must be one of the following types: float32, float64, int32, uint8, int16, int8, int64, bfloat16, uint16, half, uint32, uint64.
  • y: A Tensor. Must have the same type as x.
  • name: A name for the operation (optional).

Returns:

A Tensor of type bool.

__lt__

Defined in generated file: python/ops/gen_math_ops.py

__lt__(
    x,
    y,
    name=None
)

Returns the truth value of (x < y) element-wise.

NOTE: math.less supports broadcasting. More about broadcasting here

Args:

  • x: A Tensor. Must be one of the following types: float32, float64, int32, uint8, int16, int8, int64, bfloat16, uint16, half, uint32, uint64.
  • y: A Tensor. Must have the same type as x.
  • name: A name for the operation (optional).

Returns:

A Tensor of type bool.

__mod__

Defined in generated file: python/ops/gen_math_ops.py

__mod__(
    x,
    y,
    name=None
)

Returns element-wise remainder of division. When x < 0 xor y < 0 is

true, this follows Python semantics in that the result here is consistent with a flooring divide. E.g. floor(x / y) * y + mod(x, y) = x.

NOTE: math.floormod supports broadcasting. More about broadcasting here

Args:

  • x: A Tensor. Must be one of the following types: int32, int64, bfloat16, half, float32, float64.
  • y: A Tensor. Must have the same type as x.
  • name: A name for the operation (optional).

Returns:

A Tensor. Has the same type as x.

__mul__

View source

__mul__(
    x,
    y,
    name=None
)

Returns x * y element-wise.

NOTE: tf.multiply supports broadcasting. More about broadcasting here

Args:

  • x: A Tensor. Must be one of the following types: bfloat16, half, float32, float64, uint8, int8, uint16, int16, int32, int64, complex64, complex128.
  • y: A Tensor. Must have the same type as x.
  • name: A name for the operation (optional).

Returns:

A Tensor. Has the same type as x.

__neg__

Defined in generated file: python/ops/gen_math_ops.py

__neg__(
    x,
    name=None
)

Computes numerical negative value element-wise.

I.e., \(y = -x\).

Args:

  • x: A Tensor. Must be one of the following types: bfloat16, half, float32, float64, int32, int64, complex64, complex128.
  • name: A name for the operation (optional).

Returns:

A Tensor. Has the same type as x.

If x is a SparseTensor, returns SparseTensor(x.indices, tf.math.negative(x.values, ...), x.dense_shape)

__nonzero__

View source

__nonzero__(_)

Dummy method to prevent a RaggedTensor from being used as a Python bool.

__or__

Defined in generated file: python/ops/gen_math_ops.py

__or__(
    x,
    y,
    name=None
)

Returns the truth value of x OR y element-wise.

NOTE: math.logical_or supports broadcasting. More about broadcasting here

Args:

  • x: A Tensor of type bool.
  • y: A Tensor of type bool.
  • name: A name for the operation (optional).

Returns:

A Tensor of type bool.

__pow__

View source

__pow__(
    x,
    y,
    name=None
)

Computes the power of one value to another.

Given a tensor x and a tensor y, this operation computes \(x^y\) for corresponding elements in x and y. For example:

x = tf.constant([[2, 2], [3, 3]])
y = tf.constant([[8, 16], [2, 3]])
tf.pow(x, y)  # [[256, 65536], [9, 27]]

Args:

  • x: A Tensor of type float16, float32, float64, int32, int64, complex64, or complex128.
  • y: A Tensor of type float16, float32, float64, int32, int64, complex64, or complex128.
  • name: A name for the operation (optional).

Returns:

A Tensor.

__radd__

Defined in generated file: python/ops/gen_math_ops.py

__radd__(
    x,
    y,
    name=None
)

Returns x + y element-wise.

NOTE: math.add supports broadcasting. AddN does not. More about broadcasting here

Args:

  • x: A Tensor. Must be one of the following types: bfloat16, half, float32, float64, uint8, int8, int16, int32, int64, complex64, complex128, string.
  • y: A Tensor. Must have the same type as x.
  • name: A name for the operation (optional).

Returns:

A Tensor. Has the same type as x.

__rand__

Defined in generated file: python/ops/gen_math_ops.py

__rand__(
    x,
    y,
    name=None
)

Returns the truth value of x AND y element-wise.

NOTE: math.logical_and supports broadcasting. More about broadcasting here

Args:

  • x: A Tensor of type bool.
  • y: A Tensor of type bool.
  • name: A name for the operation (optional).

Returns:

A Tensor of type bool.

__rdiv__

View source

__rdiv__(
    x,
    y,
    name=None
)

Divides x / y elementwise (using Python 2 division operator semantics). (deprecated)

NOTE: Prefer using the Tensor division operator or tf.divide which obey Python 3 division operator semantics.

This function divides x and y, forcing Python 2 semantics. That is, if x and y are both integers then the result will be an integer. This is in contrast to Python 3, where division with / is always a float while division with // is always an integer.

Args:

  • x: Tensor numerator of real numeric type.
  • y: Tensor denominator of real numeric type.
  • name: A name for the operation (optional).

Returns:

x / y returns the quotient of x and y.

__rfloordiv__

View source

__rfloordiv__(
    x,
    y,
    name=None
)

Divides x / y elementwise, rounding toward the most negative integer.

The same as tf.compat.v1.div(x,y) for integers, but uses tf.floor(tf.compat.v1.div(x,y)) for floating point arguments so that the result is always an integer (though possibly an integer represented as floating point). This op is generated by x // y floor division in Python 3 and in Python 2.7 with from __future__ import division.

x and y must have the same type, and the result will have the same type as well.

Args:

  • x: Tensor numerator of real numeric type.
  • y: Tensor denominator of real numeric type.
  • name: A name for the operation (optional).

Returns:

x / y rounded down.

Raises:

  • TypeError: If the inputs are complex.

__rmod__

Defined in generated file: python/ops/gen_math_ops.py

__rmod__(
    x,
    y,
    name=None
)

Returns element-wise remainder of division. When x < 0 xor y < 0 is

true, this follows Python semantics in that the result here is consistent with a flooring divide. E.g. floor(x / y) * y + mod(x, y) = x.

NOTE: math.floormod supports broadcasting. More about broadcasting here

Args:

  • x: A Tensor. Must be one of the following types: int32, int64, bfloat16, half, float32, float64.
  • y: A Tensor. Must have the same type as x.
  • name: A name for the operation (optional).

Returns:

A Tensor. Has the same type as x.

__rmul__

View source

__rmul__(
    x,
    y,
    name=None
)

Returns x * y element-wise.

NOTE: tf.multiply supports broadcasting. More about broadcasting here

Args:

  • x: A Tensor. Must be one of the following types: bfloat16, half, float32, float64, uint8, int8, uint16, int16, int32, int64, complex64, complex128.
  • y: A Tensor. Must have the same type as x.
  • name: A name for the operation (optional).

Returns:

A Tensor. Has the same type as x.

__ror__

Defined in generated file: python/ops/gen_math_ops.py

__ror__(
    x,
    y,
    name=None
)

Returns the truth value of x OR y element-wise.

NOTE: math.logical_or supports broadcasting. More about broadcasting here

Args:

  • x: A Tensor of type bool.
  • y: A Tensor of type bool.
  • name: A name for the operation (optional).

Returns:

A Tensor of type bool.

__rpow__

View source

__rpow__(
    x,
    y,
    name=None
)

Computes the power of one value to another.

Given a tensor x and a tensor y, this operation computes \(x^y\) for corresponding elements in x and y. For example:

x = tf.constant([[2, 2], [3, 3]])
y = tf.constant([[8, 16], [2, 3]])
tf.pow(x, y)  # [[256, 65536], [9, 27]]

Args:

  • x: A Tensor of type float16, float32, float64, int32, int64, complex64, or complex128.
  • y: A Tensor of type float16, float32, float64, int32, int64, complex64, or complex128.
  • name: A name for the operation (optional).

Returns:

A Tensor.

__rsub__

View source

__rsub__(
    x,
    y,
    name=None
)

Returns x - y element-wise.

NOTE: Subtract supports broadcasting. More about broadcasting here

Args:

  • x: A Tensor. Must be one of the following types: bfloat16, half, float32, float64, uint8, int8, uint16, int16, int32, int64, complex64, complex128.
  • y: A Tensor. Must have the same type as x.
  • name: A name for the operation (optional).

Returns:

A Tensor. Has the same type as x.

__rtruediv__

View source

__rtruediv__(
    x,
    y,
    name=None
)

Divides x / y elementwise (using Python 3 division operator semantics).

NOTE: Prefer using the Tensor operator or tf.divide which obey Python division operator semantics.

This function forces Python 3 division operator semantics where all integer arguments are cast to floating types first. This op is generated by normal x / y division in Python 3 and in Python 2.7 with from __future__ import division. If you want integer division that rounds down, use x // y or tf.math.floordiv.

x and y must have the same numeric type. If the inputs are floating point, the output will have the same type. If the inputs are integral, the inputs are cast to float32 for int8 and int16 and float64 for int32 and int64 (matching the behavior of Numpy).

Args:

  • x: Tensor numerator of numeric type.
  • y: Tensor denominator of numeric type.
  • name: A name for the operation (optional).

Returns:

x / y evaluated in floating point.

Raises:

  • TypeError: If x and y have different dtypes.

__rxor__

View source

__rxor__(
    x,
    y,
    name='LogicalXor'
)

Logical XOR function.

x ^ y = (x | y) & ~(x & y)

Inputs are tensor and if the tensors contains more than one element, an element-wise logical XOR is computed.

Usage:

x = tf.constant([False, False, True, True], dtype = tf.bool)
y = tf.constant([False, True, False, True], dtype = tf.bool)
z = tf.logical_xor(x, y, name="LogicalXor")
#  here z = [False  True  True False]

Args:

  • x: A Tensor type bool.
  • y: A Tensor of type bool.

Returns:

A Tensor of type bool with the same size as that of x or y.

__sub__

View source

__sub__(
    x,
    y,
    name=None
)

Returns x - y element-wise.

NOTE: Subtract supports broadcasting. More about broadcasting here

Args:

  • x: A Tensor. Must be one of the following types: bfloat16, half, float32, float64, uint8, int8, uint16, int16, int32, int64, complex64, complex128.
  • y: A Tensor. Must have the same type as x.
  • name: A name for the operation (optional).

Returns:

A Tensor. Has the same type as x.

__truediv__

View source

__truediv__(
    x,
    y,
    name=None
)

Divides x / y elementwise (using Python 3 division operator semantics).

NOTE: Prefer using the Tensor operator or tf.divide which obey Python division operator semantics.

This function forces Python 3 division operator semantics where all integer arguments are cast to floating types first. This op is generated by normal x / y division in Python 3 and in Python 2.7 with from __future__ import division. If you want integer division that rounds down, use x // y or tf.math.floordiv.

x and y must have the same numeric type. If the inputs are floating point, the output will have the same type. If the inputs are integral, the inputs are cast to float32 for int8 and int16 and float64 for int32 and int64 (matching the behavior of Numpy).

Args:

  • x: Tensor numerator of numeric type.
  • y: Tensor denominator of numeric type.
  • name: A name for the operation (optional).

Returns:

x / y evaluated in floating point.

Raises:

  • TypeError: If x and y have different dtypes.

__xor__

View source

__xor__(
    x,
    y,
    name='LogicalXor'
)

Logical XOR function.

x ^ y = (x | y) & ~(x & y)

Inputs are tensor and if the tensors contains more than one element, an element-wise logical XOR is computed.

Usage:

x = tf.constant([False, False, True, True], dtype = tf.bool)
y = tf.constant([False, True, False, True], dtype = tf.bool)
z = tf.logical_xor(x, y, name="LogicalXor")
#  here z = [False  True  True False]

Args:

  • x: A Tensor type bool.
  • y: A Tensor of type bool.

Returns:

A Tensor of type bool with the same size as that of x or y.

bounding_shape

View source

bounding_shape(
    axis=None,
    name=None,
    out_type=None
)

Returns the tight bounding box shape for this RaggedTensor.

Args:

  • axis: An integer scalar or vector indicating which axes to return the bounding box for. If not specified, then the full bounding box is returned.
  • name: A name prefix for the returned tensor (optional).
  • out_type: dtype for the returned tensor. Defaults to self.row_splits.dtype.

Returns:

An integer Tensor (dtype=self.row_splits.dtype). If axis is not specified, then output is a vector with output.shape=[self.shape.ndims]. If axis is a scalar, then the output is a scalar. If axis is a vector, then output is a vector, where output[i] is the bounding size for dimension axis[i].

Example:

>>> rt = ragged.constant([[1, 2, 3, 4], [5], [], [6, 7, 8, 9], [10]])
>>> rt.bounding_shape()
[5, 4]

consumers

View source

consumers()

from_nested_row_lengths

View source

@classmethod
from_nested_row_lengths(
    cls,
    flat_values,
    nested_row_lengths,
    name=None,
    validate=True
)

Creates a RaggedTensor from a nested list of row_lengths tensors.

Equivalent to:

result = flat_values
for row_lengths in reversed(nested_row_lengths):
  result = from_row_lengths(result, row_lengths)

Args:

  • flat_values: A potentially ragged tensor.
  • nested_row_lengths: A list of 1-D integer tensors. The ith tensor is used as the row_lengths for the ith ragged dimension.
  • name: A name prefix for the RaggedTensor (optional).
  • validate: If true, then use assertions to check that the arguments form a valid RaggedTensor.

Returns:

A RaggedTensor (or flat_values if nested_row_lengths is empty).

from_nested_row_splits

View source

@classmethod
from_nested_row_splits(
    cls,
    flat_values,
    nested_row_splits,
    name=None,
    validate=True
)

Creates a RaggedTensor from a nested list of row_splits tensors.

Equivalent to:

result = flat_values
for row_splits in reversed(nested_row_splits):
  result = from_row_splits(result, row_splits)

Args:

  • flat_values: A potentially ragged tensor.
  • nested_row_splits: A list of 1-D integer tensors. The ith tensor is used as the row_splits for the ith ragged dimension.
  • name: A name prefix for the RaggedTensor (optional).
  • validate: If true, then use assertions to check that the arguments form a valid RaggedTensor.

Returns:

A RaggedTensor (or flat_values if nested_row_splits is empty).

from_nested_value_rowids

View source

@classmethod
from_nested_value_rowids(
    cls,
    flat_values,
    nested_value_rowids,
    nested_nrows=None,
    name=None,
    validate=True
)

Creates a RaggedTensor from a nested list of value_rowids tensors.

Equivalent to:

result = flat_values
for (rowids, nrows) in reversed(zip(nested_value_rowids, nested_nrows)):
  result = from_value_rowids(result, rowids, nrows)

Args:

  • flat_values: A potentially ragged tensor.
  • nested_value_rowids: A list of 1-D integer tensors. The ith tensor is used as the value_rowids for the ith ragged dimension.
  • nested_nrows: A list of integer scalars. The ith scalar is used as the nrows for the ith ragged dimension.
  • name: A name prefix for the RaggedTensor (optional).
  • validate: If true, then use assertions to check that the arguments form a valid RaggedTensor.

Returns:

A RaggedTensor (or flat_values if nested_value_rowids is empty).

Raises:

  • ValueError: If len(nested_values_rowids) != len(nested_nrows).

from_row_lengths

View source

@classmethod
from_row_lengths(
    cls,
    values,
    row_lengths,
    name=None,
    validate=True
)

Creates a RaggedTensor with rows partitioned by row_lengths.

The returned RaggedTensor corresponds with the python list defined by:

result = [[values.pop(0) for i in range(length)]
          for length in row_lengths]

Args:

  • values: A potentially ragged tensor with shape [nvals, ...].
  • row_lengths: A 1-D integer tensor with shape [nrows]. Must be nonnegative. sum(row_lengths) must be nvals.
  • name: A name prefix for the RaggedTensor (optional).
  • validate: If true, then use assertions to check that the arguments form a valid RaggedTensor.

Returns:

A RaggedTensor. result.rank = values.rank + 1. result.ragged_rank = values.ragged_rank + 1.

Example:

>>> print(tf.RaggedTensor.from_row_lengths(
...     values=[3, 1, 4, 1, 5, 9, 2, 6],
...     row_lengths=[4, 0, 3, 1, 0]))
<tf.RaggedTensor [[3, 1, 4, 1], [], [5, 9, 2], [6], []])>

from_row_limits

View source

@classmethod
from_row_limits(
    cls,
    values,
    row_limits,
    name=None,
    validate=True
)

Creates a RaggedTensor with rows partitioned by row_limits.

Equivalent to: from_row_splits(values, concat([0, row_limits])).

Args:

  • values: A potentially ragged tensor with shape [nvals, ...].
  • row_limits: A 1-D integer tensor with shape [nrows]. Must be sorted in ascending order. If nrows>0, then row_limits[-1] must be nvals.
  • name: A name prefix for the RaggedTensor (optional).
  • validate: If true, then use assertions to check that the arguments form a valid RaggedTensor.

Returns:

A RaggedTensor. result.rank = values.rank + 1. result.ragged_rank = values.ragged_rank + 1.

Example:

>>> print(tf.RaggedTensor.from_row_limits(
...     values=[3, 1, 4, 1, 5, 9, 2, 6],
...     row_limits=[4, 4, 7, 8, 8]))
<tf.RaggedTensor [[3, 1, 4, 1], [], [5, 9, 2], [6], []]>

from_row_splits

View source

@classmethod
from_row_splits(
    cls,
    values,
    row_splits,
    name=None,
    validate=True
)

Creates a RaggedTensor with rows partitioned by row_splits.

The returned RaggedTensor corresponds with the python list defined by:

result = [values[row_splits[i]:row_splits[i + 1]]
          for i in range(len(row_splits) - 1)]

Args:

  • values: A potentially ragged tensor with shape [nvals, ...].
  • row_splits: A 1-D integer tensor with shape [nrows+1]. Must not be empty, and must be sorted in ascending order. row_splits[0] must be zero and row_splits[-1] must be nvals.
  • name: A name prefix for the RaggedTensor (optional).
  • validate: If true, then use assertions to check that the arguments form a valid RaggedTensor.

Returns:

A RaggedTensor. result.rank = values.rank + 1. result.ragged_rank = values.ragged_rank + 1.

Raises:

  • ValueError: If row_splits is an empty list.

Example:

>>> print(tf.RaggedTensor.from_row_splits(
...     values=[3, 1, 4, 1, 5, 9, 2, 6],
...     row_splits=[0, 4, 4, 7, 8, 8]))
<tf.RaggedTensor [[3, 1, 4, 1], [], [5, 9, 2], [6], []]>

from_row_starts

View source

@classmethod
from_row_starts(
    cls,
    values,
    row_starts,
    name=None,
    validate=True
)

Creates a RaggedTensor with rows partitioned by row_starts.

Equivalent to: from_row_splits(values, concat([row_starts, nvals])).

Args:

  • values: A potentially ragged tensor with shape [nvals, ...].
  • row_starts: A 1-D integer tensor with shape [nrows]. Must be nonnegative and sorted in ascending order. If nrows>0, then row_starts[0] must be zero.
  • name: A name prefix for the RaggedTensor (optional).
  • validate: If true, then use assertions to check that the arguments form a valid RaggedTensor.

Returns:

A RaggedTensor. result.rank = values.rank + 1. result.ragged_rank = values.ragged_rank + 1.

Example:

>>> print(tf.RaggedTensor.from_row_starts(
...     values=[3, 1, 4, 1, 5, 9, 2, 6],
...     row_starts=[0, 4, 4, 7, 8]))
<tf.RaggedTensor [[3, 1, 4, 1], [], [5, 9, 2], [6], []]>

from_sparse

View source

@classmethod
from_sparse(
    cls,
    st_input,
    name=None,
    row_splits_dtype=tf.dtypes.int64
)

Converts a 2D tf.SparseTensor to a RaggedTensor.

Each row of the output RaggedTensor will contain the explicit values from the same row in st_input. st_input must be ragged-right. If not it is not ragged-right, then an error will be generated.

Example:

st = SparseTensor(indices=[[0, 1], [0, 2], [0, 3], [1, 0], [3, 0]],
values=[1, 2, 3, 4, 5],
dense_shape=[4, 3])
rt.RaggedTensor.from_sparse(st).eval().tolist()
[[1, 2, 3], [4], [], [5]]

Currently, only two-dimensional SparseTensors are supported.

Args:

  • st_input: The sparse tensor to convert. Must have rank 2.
  • name: A name prefix for the returned tensors (optional).
  • row_splits_dtype: dtype for the returned RaggedTensor's row_splits tensor. One of tf.int32 or tf.int64.

Returns:

A RaggedTensor with the same values as st_input. output.ragged_rank = rank(st_input) - 1. output.shape = [st_input.dense_shape[0], None].

Raises:

  • ValueError: If the number of dimensions in st_input is not known statically, or is not two.

from_tensor

View source

@classmethod
from_tensor(
    cls,
    tensor,
    lengths=None,
    padding=None,
    ragged_rank=1,
    name=None,
    row_splits_dtype=tf.dtypes.int64
)

Converts a tf.Tensor into a RaggedTensor.

The set of absent/default values may be specified using a vector of lengths or a padding value (but not both). If lengths is specified, then the output tensor will satisfy output[row] = tensor[row][:lengths[row]]. If 'lengths' is a list of lists or tuple of lists, those lists will be used as nested row lengths. If padding is specified, then any row suffix consisting entirely of padding will be excluded from the returned RaggedTensor. If neither lengths nor padding is specified, then the returned RaggedTensor will have no absent/default values.

Examples:

dt = tf.constant([[5, 7, 0], [0, 3, 0], [6, 0, 0]])
tf.RaggedTensor.from_tensor(dt)
<tf.RaggedTensor [[5, 7, 0], [0, 3, 0], [6, 0, 0]]>
tf.RaggedTensor.from_tensor(dt, lengths=[1, 0, 3])
<tf.RaggedTensor [[5], [], [6, 0, 0]]>

```
tf.RaggedTensor.from_tensor(dt, padding=0)
<tf.RaggedTensor [[5, 7], [0, 3], [6]]>

dt = tf.constant([[[5, 0], [7, 0], [0, 0]],
                      [[0, 0], [3, 0], [0, 0]],
                      [[6, 0], [0, 0], [0, 0]]])
tf.RaggedTensor.from_tensor(dt, lengths=([2, 0, 3], [1, 1, 2, 0, 1]))
<tf.RaggedTensor [[[5], [7]], [], [[6, 0], [], [0]]]>


#### Args:


* <b>`tensor`</b>: The `Tensor` to convert.  Must have rank `ragged_rank + 1` or
  higher.
* <b>`lengths`</b>: An optional set of row lengths, specified using a 1-D integer
  `Tensor` whose length is equal to `tensor.shape[0]` (the number of rows
  in `tensor`).  If specified, then `output[row]` will contain
  `tensor[row][:lengths[row]]`.  Negative lengths are treated as zero. You
  may optionally pass a list or tuple of lengths to this argument, which
  will be used as nested row lengths to construct a ragged tensor with
  multiple ragged dimensions.
* <b>`padding`</b>: An optional padding value.  If specified, then any row suffix
  consisting entirely of `padding` will be excluded from the returned
  RaggedTensor.  `padding` is a `Tensor` with the same dtype as `tensor`
  and with `shape=tensor.shape[ragged_rank + 1:]`.
* <b>`ragged_rank`</b>: Integer specifying the ragged rank for the returned
  `RaggedTensor`.  Must be greater than zero.
* <b>`name`</b>: A name prefix for the returned tensors (optional).
* <b>`row_splits_dtype`</b>: `dtype` for the returned `RaggedTensor`'s `row_splits`
  tensor.  One of <a href="../tf#int32"><code>tf.int32</code></a> or <a href="../tf#int64"><code>tf.int64</code></a>.


#### Returns:

A `RaggedTensor` with the specified `ragged_rank`.  The shape of the
returned ragged tensor is compatible with the shape of `tensor`.


#### Raises:


* <b>`ValueError`</b>: If both `lengths` and `padding` are specified.

<h3 id="from_value_rowids"><code>from_value_rowids</code></h3>

<a target="_blank" href="https://github.com/tensorflow/tensorflow/blob/r2.0/tensorflow/python/ops/ragged/ragged_tensor.py#L285-L401">View source</a>

``` python
@classmethod
from_value_rowids(
    cls,
    values,
    value_rowids,
    nrows=None,
    name=None,
    validate=True
)

Creates a RaggedTensor with rows partitioned by value_rowids.

The returned RaggedTensor corresponds with the python list defined by:

result = [[values[i] for i in range(len(values)) if value_rowids[i] == row]
          for row in range(nrows)]

Args:

  • values: A potentially ragged tensor with shape [nvals, ...].
  • value_rowids: A 1-D integer tensor with shape [nvals], which corresponds one-to-one with values, and specifies each value's row index. Must be nonnegative, and must be sorted in ascending order.
  • nrows: An integer scalar specifying the number of rows. This should be specified if the RaggedTensor may containing empty training rows. Must be greater than value_rowids[-1] (or zero if value_rowids is empty). Defaults to value_rowids[-1] (or zero if value_rowids is empty).
  • name: A name prefix for the RaggedTensor (optional).
  • validate: If true, then use assertions to check that the arguments form a valid RaggedTensor.

Returns:

A RaggedTensor. result.rank = values.rank + 1. result.ragged_rank = values.ragged_rank + 1.

Raises:

  • ValueError: If nrows is incompatible with value_rowids.

Example:

>>> print(tf.RaggedTensor.from_value_rowids(
...     values=[3, 1, 4, 1, 5, 9, 2, 6],
...     value_rowids=[0, 0, 0, 0, 2, 2, 2, 3],
...     nrows=5))
<tf.RaggedTensor [[3, 1, 4, 1], [], [5, 9, 2], [6], []]>

nested_row_lengths

View source

nested_row_lengths(name=None)

Returns a tuple containing the row_lengths for all ragged dimensions.

rt.nested_row_lengths() is a tuple containing the row_lengths tensors for all ragged dimensions in rt, ordered from outermost to innermost.

Args:

  • name: A name prefix for the returned tensors (optional).

Returns:

A tuple of 1-D integer Tensors. The length of the tuple is equal to self.ragged_rank.

nested_value_rowids

View source

nested_value_rowids(name=None)

Returns a tuple containing the value_rowids for all ragged dimensions.

rt.nested_value_rowids is a tuple containing the value_rowids tensors for all ragged dimensions in rt, ordered from outermost to innermost. In particular, rt.nested_value_rowids = (rt.value_rowids(),) + value_ids where:

* `value_ids = ()` if `rt.values` is a `Tensor`.
* `value_ids = rt.values.nested_value_rowids` otherwise.

Args:

  • name: A name prefix for the returned tensors (optional).

Returns:

A tuple of 1-D integer Tensors.

Example:

>>> rt = ragged.constant([[[[3, 1, 4, 1], [], [5, 9, 2]], [], [[6], []]]])
>>> for i, ids in enumerate(rt.nested_value_rowids()):
...   print('row ids for dimension %d: %s' % (i+1, ids))
row ids for dimension 1: [0]
row ids for dimension 2: [0, 0, 0, 2, 2]
row ids for dimension 3: [0, 0, 0, 0, 2, 2, 2, 3]

nrows

View source

nrows(
    out_type=None,
    name=None
)

Returns the number of rows in this ragged tensor.

I.e., the size of the outermost dimension of the tensor.

Args:

  • out_type: dtype for the returned tensor. Defaults to self.row_splits.dtype.
  • name: A name prefix for the returned tensor (optional).

Returns:

A scalar Tensor with dtype out_type.

Example:

>>> rt = ragged.constant([[3, 1, 4, 1], [], [5, 9, 2], [6], []])
>>> rt.nrows()  # rt has 5 rows.
5

row_lengths

View source

row_lengths(
    axis=1,
    name=None
)

Returns the lengths of the rows in this ragged tensor.

rt.row_lengths()[i] indicates the number of values in the ith row of rt.

Args:

  • axis: An integer constant indicating the axis whose row lengths should be returned.
  • name: A name prefix for the returned tensor (optional).

Returns:

A potentially ragged integer Tensor with shape self.shape[:axis].

Raises:

  • ValueError: If axis is out of bounds.

Example:

>>> rt = ragged.constant([[[3, 1, 4], [1]], [], [[5, 9], [2]], [[6]], []])
>>> rt.row_lengths(rt)  # lengths of rows in rt
tf.Tensor([2, 0, 2, 1, 0])
>>> rt.row_lengths(axis=2)  # lengths of axis=2 rows.
<tf.RaggedTensor [[3, 1], [], [2, 1], [1], []]>

row_limits

View source

row_limits(name=None)

Returns the limit indices for rows in this ragged tensor.

These indices specify where the values for each row end in self.values. rt.row_limits(self) is equal to rt.row_splits[:-1].

Args:

  • name: A name prefix for the returned tensor (optional).

Returns:

A 1-D integer Tensor with shape [nrows]. The returned tensor is nonnegative, and is sorted in ascending order.

Example:

>>> rt = ragged.constant([[3, 1, 4, 1], [], [5, 9, 2], [6], []])
>>> rt.values
tf.Tensor([3, 1, 4, 1, 5, 9, 2, 6])
>>> rt.row_limits()  # indices of row limits in rt.values
tf.Tensor([4, 4, 7, 8, 8])

row_starts

View source

row_starts(name=None)

Returns the start indices for rows in this ragged tensor.

These indices specify where the values for each row begin in self.values. rt.row_starts() is equal to rt.row_splits[:-1].

Args:

  • name: A name prefix for the returned tensor (optional).

Returns:

A 1-D integer Tensor with shape [nrows]. The returned tensor is nonnegative, and is sorted in ascending order.

Example:

>>> rt = ragged.constant([[3, 1, 4, 1], [], [5, 9, 2], [6], []])
>>> rt.values
tf.Tensor([3, 1, 4, 1, 5, 9, 2, 6])
>>> rt.row_starts()  # indices of row starts in rt.values
tf.Tensor([0, 4, 4, 7, 8])

to_list

View source

to_list()

Returns a nested Python list with the values for this RaggedTensor.

Requires that rt was constructed in eager execution mode.

Returns:

A nested Python list.

to_sparse

View source

to_sparse(name=None)

Converts this RaggedTensor into a tf.SparseTensor.

Example:

rt = ragged.constant([[1, 2, 3], [4], [], [5, 6]])
rt.to_sparse().eval()
SparseTensorValue(indices=[[0, 0], [0, 1], [0, 2], [1, 0], [3, 0], [3, 1]],
                  values=[1, 2, 3, 4, 5, 6],
                  dense_shape=[4, 3])

Args:

  • name: A name prefix for the returned tensors (optional).

Returns:

A SparseTensor with the same values as self.

to_tensor

View source

to_tensor(
    default_value=None,
    name=None
)

Converts this RaggedTensor into a tf.Tensor.

Example:

rt = ragged.constant([[9, 8, 7], [], [6, 5], [4]])
print rt.to_tensor()
[[9 8 7]
 [0 0 0]
 [6 5 0]
 [4 0 0]]

Args:

  • default_value: Value to set for indices not specified in self. Defaults to zero. default_value must be broadcastable to self.shape[self.ragged_rank + 1:].
  • name: A name prefix for the returned tensors (optional).

Returns:

A Tensor with shape ragged.bounding_shape(self) and the values specified by the non-empty values in self. Empty values are assigned default_value.

value_rowids

View source

value_rowids(name=None)

Returns the row indices for the values in this ragged tensor.

rt.value_rowids() corresponds one-to-one with the outermost dimension of rt.values, and specifies the row containing each value. In particular, the row rt[row] consists of the values rt.values[j] where rt.value_rowids()[j] == row.

Args:

  • name: A name prefix for the returned tensor (optional).

Returns:

A 1-D integer Tensor with shape self.values.shape[:1]. The returned tensor is nonnegative, and is sorted in ascending order.

Example:

>>> rt = ragged.constant([[3, 1, 4, 1], [], [5, 9, 2], [6], []])
>>> rt.values
tf.Tensor([3, 1, 4, 1, 5, 9, 2, 6])
>>> rt.value_rowids()
tf.Tensor([0, 0, 0, 0, 2, 2, 2, 3])  # corresponds 1:1 with rt.values

with_flat_values

View source

with_flat_values(new_values)

Returns a copy of self with flat_values replaced by new_value.

Preserves cached row-partitioning tensors such as self.cached_nrows and self.cached_value_rowids if they have values.

Args:

  • new_values: Potentially ragged tensor that should replace self.flat_values. Must have rank > 0, and must have the same number of rows as self.flat_values.

Returns:

A RaggedTensor. result.rank = self.ragged_rank + new_values.rank. result.ragged_rank = self.ragged_rank + new_values.ragged_rank.

with_row_splits_dtype

View source

with_row_splits_dtype(dtype)

Returns a copy of this RaggedTensor with the given row_splits dtype.

For RaggedTensors with multiple ragged dimensions, the row_splits for all nested RaggedTensor objects are cast to the given dtype.

Args:

Returns:

A copy of this RaggedTensor, with the row_splits cast to the given type.

with_values

View source

with_values(new_values)

Returns a copy of self with values replaced by new_value.

Preserves cached row-partitioning tensors such as self.cached_nrows and self.cached_value_rowids if they have values.

Args:

  • new_values: Potentially ragged tensor to use as the values for the returned RaggedTensor. Must have rank > 0, and must have the same number of rows as self.values.

Returns:

A RaggedTensor. result.rank = 1 + new_values.rank. result.ragged_rank = 1 + new_values.ragged_rank