Computes the gradients of 3-D convolution with respect to the filter.

input A Tensor. Must be one of the following types: half, bfloat16, float32, float64. Shape [batch, depth, rows, cols, in_channels].
filter_sizes A Tensor of type int32. An integer vector representing the tensor shape of filter, where filter is a 5-D [filter_depth, filter_height, filter_width, in_channels, out_channels] tensor.
out_backprop A Tensor. Must have the same type as input. Backprop signal of shape [batch, out_depth, out_rows, out_cols, out_channels].
strides A list of ints that has length >= 5. 1-D tensor of length 5. The stride of the sliding window for each dimension of input. Must have strides[0] = strides[4] = 1.
padding A string from: "SAME", "VALID". The type of padding algorithm to use.
data_format An optional string from: "NDHWC", "NCDHW". Defaults to "NDHWC". The data format of the input and output data. With the default format "NDHWC", the data is stored in the orde