tf.quantization.quantize_and_dequantize_v2

Quantizes then dequantizes a tensor.

Updates the gradient definition for quantization that is outside the range to be 0.To simulate the V1 the behavior of tf.quantization.quantize_and_dequantize(...) use tf.grad_pass_through(tf.quantization.quantize_and_dequantize_v2)(...).

Example usage:

def getQuantizeOp(input):
    input_tensor = tf.placeholder(tf.float32, shape=[4, 4])
    net = tf.quantization.quantize_and_dequantize(input,
                                                  input_min=min_threshold,
                                                  input_max=max_threshold,
                                                  range_given=True)

To simulate v1 behavior:

def testDecomposeQuantizeDequantize(self):
    def f(input_tensor):
      return tf.quantization.quantize_and_dequantize_v2(input_tensor,
                                                        input_min = 5.0,
                                                        input_max= -10.0,
                                                        range_given=True)
    input_tensor = tf.placeholder(tf.float32, shape=[4, 4])
    net = tf.grad_pass_through(f)(input_tensor)

input A Tensor to quantize and dequantize.
input_min If range_given=True, the minimum input value, that needs to be represented in the quantized representation. If axis is specified, this should be a vector of minimum values for each slice along axis.
input_max If range_given=True, the maximum input