tf.keras.layers.SeparableConv2D

Depthwise separable 2D convolution.

Inherits From: Layer, Module

Separable convolutions consist of first performing a depthwise spatial convolution (which acts on each input channel separately) followed by a pointwise convolution which mixes the resulting output channels. The depth_multiplier argument controls how many output channels are generated per input channel in the depthwise step.

Intuitively, separable convolutions can be understood as a way to factorize a convolution kernel into two smaller kernels, or as an extreme version of an Inception block.