tf.keras.metrics.MeanIoU

Computes the mean Intersection-Over-Union metric.

Inherits From: Metric, Layer, Module

Mean Intersection-Over-Union is a common evaluation metric for semantic image segmentation, which first computes the IOU for each semantic class and then computes the average over classes. IOU is defined as follows: IOU = true_positive / (true_positive + false_positive + false_negative). The predictions are accumulated in a confusion matrix, weighted by sample_weight and the metric is then calculated from it.

If sample_weight is None, weights default to 1. Use sample_weight of 0 to mask values.

num_classes The possible number of labels the prediction task can have. This value must be provided, since a confusion matrix of dimension = [num_classes, num_classes] will be allocated.
name (Optional) string name of the metric instance.
dtype (O