tf.keras.metrics.MeanIoU

Computes the mean Intersection-Over-Union metric.

Inherits From: Metric

Mean Intersection-Over-Union is a common evaluation metric for semantic image segmentation, which first computes the IOU for each semantic class and then computes the average over classes. IOU is defined as follows: IOU = true_positive / (true_positive + false_positive + false_negative). The predictions are accumulated in a confusion matrix, weighted by sample_weight and the metric is then calculated from it.

If sample_weight is None, weights default to 1. Use sample_weight of 0 to mask values.

num_classes The possible number of labels the prediction task can have. This value must be provided, since a confusion matrix of dimension = [num_classes, num_classes] will be allocated.
name (Optional) string name of the metric instance.
dtype (Optional) data type of the metric result.

Standalone usage:

# cm = [[1, 1],
#        [1, 1]]
# sum_row = [2, 2], sum_col = [2, 2], true_positives = [1, 1]
# iou = true_positives / (sum_row + sum_col - true_positives))
# result = (1 / (2 + 2 - 1) + 1 / (2 + 2 - 1)) / 2 = 0.33
m = tf.keras.metrics.MeanIoU(num_classes=2)
m.update_state([0, 0, 1, 1], [0, 1, 0, 1])