TF 2.0 is out! Get hands-on practice at TF World, Oct 28-31. Use code TF20 for 20% off select passes. Register now


TensorFlow 1 version View source on GitHub

Computes the mean of elements across dimensions of a tensor.



Used in the guide:

Used in the tutorials:

Reduces input_tensor along the dimensions given in axis. Unless keepdims is true, the rank of the tensor is reduced by 1 for each entry in axis. If keepdims is true, the reduced dimensions are retained with length 1.

If axis is None, all dimensions are reduced, and a tensor with a single element is returned.

For example:

x = tf.constant([[1., 1.], [2., 2.]])
tf.reduce_mean(x)  # 1.5
tf.reduce_mean(x, 0)  # [1.5, 1.5]
tf.reduce_mean(x, 1)  # [1.,  2.]


  • input_tensor: The tensor to reduce. Should have numeric type.
  • axis: The dimensions to reduce. If None (the default), reduces all dimensions. Must be in the range [-rank(input_tensor), rank(input_tensor)).
  • keepdims: If true, retains reduced dimensions with length 1.
  • name: A name for the operation (optional).


The reduced tensor.

Numpy Compatibility

Equivalent to np.mean

Please note that np.mean has a dtype parameter that could be used to specify the output type. By default this is dtype=float64. On the other hand, tf.reduce_mean has an aggressive type inference from input_tensor, for example:

x = tf.constant([1, 0, 1, 0])
tf.reduce_mean(x)  # 0
y = tf.constant([1., 0., 1., 0.])
tf.reduce_mean(y)  # 0.5