Creates a recurrent neural network specified by RNNCell cell. (deprecated)

Performs fully dynamic unrolling of inputs.


# create a BasicRNNCell
rnn_cell = tf.compat.v1.nn.rnn_cell.BasicRNNCell(hidden_size)

# 'outputs' is a tensor of shape [batch_size, max_time, cell_state_size]

# defining initial state
initial_state = rnn_cell.zero_state(batch_size, dtype=tf.float32)

# 'state' is a tensor of shape [batch_size, cell_state_size]
outputs, state = tf.compat.v1.nn.dynamic_rnn(rnn_cell, input_data,
# create 2 LSTMCells
rnn_layers = [tf.compat.v1.nn.rnn_cell.LSTMCell(size) for size in [128, 256]]

# create a RNN cell composed sequentially of a number of RNNCells
multi_rnn_cell = tf.compat.v1.nn.rnn_cell.MultiRNNCell(rnn_layers)

# 'outputs' is a tensor of shape [batch_size, max_time, 256]
# 'state' is a N-tuple where N is the number of LSTMCells containing a
# tf.nn.rnn_cell.LSTMStateTuple for each cell
outputs, state = tf.compat.v1.nn.dynamic_rnn(cell=multi_rnn_cell,

cell An instance of RNNCell.
inputs The RNN inputs. If time_major == False (default), this must be a Tensor of shape: [batch_size, max_time, ...], or a nested tuple of such elements. If time_major == True