tf.compat.v1.distribute.experimental.MultiWorkerMirroredStrategy

A distribution strategy for synchronous training on multiple workers.

Inherits From: Strategy

This strategy implements synchronous distributed training across multiple workers, each with potentially multiple GPUs. Similar to tf.distribute.MirroredStrategy, it creates copies of all variables in the model on each device across all workers.

It uses CollectiveOps's implementation of multi-worker all-reduce to to keep variables in sync. A collective op is a single op in the TensorFlow graph which can automatically choose an all-reduce algorithm in the TensorFlow runtime according to hardware, network topology and tensor sizes.

By default it uses all local GPUs or CPU for single-worker training.

When 'TF_CONFIG' environment variable is set, it parses cluster_spec, task_type and task_id from 'TF_CONFIG' and turns into a multi-worker strategy which mirrored models on GPUs of all machines in a cluster. In the current implementation, it uses all GPUs in a cluster and it assumes all workers have the same number of GPUs.

You can also pass a distribute.cluster_resolver.ClusterResolver instance when instantiating the strategy. The task_type, task_id etc. will be parsed from the resolver instance instead of from the TF_CONFIG env var.

It supports both eager mode and graph mode. However, for eager mode, it has to set up the eager context in its constructor and therefore all ops in eager mode have to run after the strategy object is created.

cluster_resolver Returns the cluster resolver associated with this strategy.

In general, when using a multi-worker tf.distribute strategy such as tf.distribute.experimental.MultiWorkerMirroredStrategy or tf.distribute.experimental.TPUStrategy(), there is a tf.distribute.cluster_resolver.ClusterResolver associated with the strategy used, and such an instance is returned by this property.

Strategies that intend to have an associated tf.distribute.cluster_resolver.ClusterResolver must set the relevant attribute, or override this property; otherwise, None is returned by default. Those strategies should also provide information regarding what is returned by this property.

Single-worker strategies usually do not have a tf.distribute.cluster_resolver.ClusterResolver, and in those cases this property will return None.

The tf.distribute.cluster_resolver.ClusterResolver may be useful when the user needs to access information such as the cluster spec, task type or task id. For example,


os.environ['TF_CONFIG'] = json.dumps({
'cluster': {
'worker': ["localhost:12345", "localhost:23456"],
'ps': ["localhost:34567"]
},
'task': {'type': 'worker', 'index': 0}
})

# This implicitly uses TF_CONFIG for the cluster and current task info.
strategy = tf.distribute.experimental.MultiWorkerMirroredStrategy()

...

if strategy.cluster_resolver.task_type == 'worker':
# Perform something that's only applicable on workers. Since we set this
# as a worker above, this block will run on this particular instance.
elif strategy.cluster_resolver.task_type == 'ps':
# Perform something that's only applicable on parameter servers. Since we
# set this as a worker above, this block will not run on this particular
# instance.

For more information, please see tf.distribute.cluster_resolver.ClusterResolver's API docstring.

extended tf.distribute.StrategyExtended with additional methods.
num_replicas_in_sync Returns number of replicas over which gradients are aggregated.

Methods

experimental_distribute_dataset

View source

Creates tf.distribute.DistributedDataset from tf.data.Dataset.

The returned tf.distribute.DistributedDataset can be iterated over similar to how regular datasets can. NOTE: The user cannot add any more transformations to a tf.distribute.DistributedDataset.

The following is an example:

strategy = tf.distribute.MirroredStrategy()

# Create a dataset
dataset = dataset_ops.Dataset.TFRecordDataset([
  "/a/1.tfr", "/a/2.tfr", "/a/3.tfr", "/a/4.tfr"])

# Distribute that dataset
dist_dataset = strategy.experimental_distribute_dataset(dataset)

# Iterate over the `tf.distribute.DistributedDataset`
for x in dist_dataset:
  # process dataset elements
  strategy.run(replica_fn, args=(x,))

In the code snippet above, the tf.distribute.DistributedDataset dist_dataset is batched by GLOBAL_BATCH_SIZE, and we iterate through it using for x in dist_dataset. x a tf.distribute.DistributedValues containing data for all replicas, which aggregates to a batch of GLOBAL_BATCH_SIZE. tf.distribute.Strategy.run will take care of feeding the right per-replica data in x to the right replica_fn executed on each replica.

What's under the hood of this method, when we say the tf.data.Dataset instance - dataset - gets distributed? It depends on how you set the tf.data.experimental.AutoShardPolicy through tf.data.experimental.DistributeOptions. By default, it is set to tf.data.experimental.AutoShardPolicy.AUTO. In a multi-worker setting, we will first attempt to distribute dataset by detecting whether dataset is being created out of reader datasets (e.g. tf.data.TFRecordDataset, tf.data.TextLineDataset, etc.) and if so, try to shard the input files. Note that there has to be at least one input file per worker. If you have less than one input file per worker, we suggest that you disable dataset sharding across workers, by setting the tf.data.experimental.DistributeOptions.auto_shard_policy to be tf.data.experimental.AutoShardPolicy.OFF.

If the attempt to shard by file is unsuccessful (i.e. the dataset is not read from files), we will shard the dataset evenly at the end by appending a .shard operation to the end of the processing pipeline. This will cause the entire preprocessing pipeline for all the data to be run on every worker, and each worker will do redundant work. We will print a warning if this route is selected.

As mentioned before, within each worker, we will also split the data among all the worker devices (if more than one a present). This will happen even if multi-worker sharding is disabled.

If the above batch splitting and dataset sharding logic is undesirable, please use tf.distribute.Strategy.experimental_distribute_datasets_from_function instead, which does not do any automatic splitting or sharding.

You can also use the element_spec property of the tf.distribute.DistributedDataset instance returned by this API to query the tf.TypeSpec of the elements returned by the iterator. This can be used to set the input_signature property of a tf.function.

strategy = tf.distribute.MirroredStrategy()

# Create a dataset
dataset = dataset_ops.Dataset.TFRecordDataset([
  "/a/1.tfr", "/a/2.tfr", "/a/3.tfr", "/a/4.tfr"])

# Distribute that dataset
dist_dataset = strategy.experimental_distribute_dataset(dataset)

@tf.function(input_signature=[dist_dataset.element_spec])
def train_step(inputs):
  # train model with inputs
  return

# Iterate over the `tf.distribute.DistributedDataset`
for x in dist_dataset:
  # process dataset elements
  strategy.run(train_step, args=(x,))

Args
dataset tf.data.Dataset that will be sharded across all replicas using the rules stated above.
options tf.distribute.InputOptions used to control options on how this dataset is distributed.

Returns
A tf.distribute.DistributedDataset.

experimental_distribute_datasets_from_function

View source

Distributes