Wraps a python function into a TensorFlow op that executes it eagerly.

Used in the notebooks

Used in the guide Used in the tutorials

This function allows expressing computations in a TensorFlow graph as Python functions. In particular, it wraps a Python function func in a once-differentiable TensorFlow operation that executes it with eager execution enabled. As a consequence, tf.py_function makes it possible to express control flow using Python constructs (if, while, for, etc.), instead of TensorFlow control flow constructs (tf.cond, tf.while_loop). For example, you might use tf.py_function to implement the log huber function:

def log_huber(x, m):
  if tf.abs(x) <= m:
    return x**2
    return m**2 * (1 - 2 * tf.math.log(m) + tf.math.log(x**2))

x = tf.compat.v1.placeholder(tf.float32)
m = tf.compat.v1.placeholder(tf.float32)

y = tf.py_function(func=log_huber, inp=[x, m], Tout=tf.float32)
dy_dx = tf.gradients(y, x)[0]

with tf.compat.v1.Session() as sess:
  # The session