Tune in to the first Women in ML Symposium this Tuesday, October 19 at 9am PST Register now


Gamma distribution.

Inherits From: Distribution

The Gamma distribution is defined over positive real numbers using parameters concentration (aka "alpha") and rate (aka "beta").

Mathematical Details

The probability density function (pdf) is,

pdf(x; alpha, beta, x > 0) = x**(alpha - 1) exp(-x beta) / Z
Z = Gamma(alpha) beta**(-alpha)


  • concentration = alpha, alpha > 0,
  • rate = beta, beta > 0,
  • Z is the normalizing constant, and,
  • Gamma is the gamma function.

The cumulative density function (cdf) is,

cdf(x; alpha, beta, x > 0) = GammaInc(alpha, beta x) / Gamma(alpha)

where GammaInc is the lower incomplete Gamma function.

The parameters can be intuited via their relationship to mean and stddev,

concentration = alpha = (mean / stddev)**2
rate = beta = mean / stddev**2 = concentration / mean

Distribution parameters are automatically broadcast in all functions; see examples for details.

Samples of this distribution are reparameterized (pathwise differentiable). The derivatives are computed using the approach described in (Figurnov et al., 2018).


import tensorflow_probability as tfp
tfd = tfp.distributions

dist = tfd.Gamma(concentration=3.0, rate=2.0)
dist2 = tfd.Gamma(concentration=[3.0, 4.0], rate=[2.0, 3.0])

Compute the gradients of samples w.r.t. the parameters:

concentration = tf.constant(3.0)
rate = tf.constant(2.0)
dist = tfd.Gamma(concentration, rate)
samples = dist.sample(5)  # Shape [5]
loss = tf.reduce_mean(tf.square(samples))  # Arbitrary loss function
# Unbiased stochastic gradients of the loss function
grads = tf.gradients(loss, [concentration, rate])


Implicit Reparameterization Gradients: Figurnov et al., 2018 (pdf)

concentration Floating point tensor, the concentration params of the distribution(s). Must contain only positive values.
rate Floating point tensor, the inverse scale params of the distribution(s). Must contain only positive values.
validate_args Python bool, default False. When True distribution parameters are checked for validity despite possibly degrading runtime performance. When False invalid inputs may silently render incorrect outputs.
allow_nan_stats Python bool, default True. When True, statistics (e.g., mean, mode, variance) use the value "NaN" to indicate the result is undefined. When False, an exception is raised if one or more of the statistic's batch members are undefined.
name Python str name prefixed to Ops created by this class.

TypeError if concentration and rate are different dtypes.