Help protect the Great Barrier Reef with TensorFlow on Kaggle

# tf.compat.v1.metrics.recall_at_k

Computes recall@k of the predictions with respect to sparse labels.

If class_id is specified, we calculate recall by considering only the entries in the batch for which class_id is in the label, and computing the fraction of them for which class_id is in the top-k predictions. If class_id is not specified, we'll calculate recall as how often on average a class among the labels of a batch entry is in the top-k predictions.

sparse_recall_at_k creates two local variables, true_positive_at_<k> and false_negative_at_<k>, that are used to compute the recall_at_k frequency. This frequency is ultimately returned as recall_at_<k>: an idempotent operation that simply divides true_positive_at_<k> by total (true_positive_at_<k> + false_negative_at_<k>).

For estimation of the metric over a stream of data, the function creates an update_op operation that updates these variables and returns the recall_at_<k>. Internally, a top_k operation computes a Tensor indicating the top k predictions. Set operations applied to top_k and labels calculate the true positives and false negatives weighted by weights. Then update_op increments true_positive_at_<k> and false_negative_at_<k> using these values.

If weights is None, weights default to 1. Use weights of 0 to mask values.

labels int64 Tensor or SparseTensor with shape [D1, ... DN, num_labels] or [D1, ... DN], where the latter implies num_labels=1. N >= 1 and num_labels is the number of target classes for the associated prediction. Commonly, N=1 and labels has shape [batch_size, num_labels]. [D1, ... DN] must match predictions. Values should be in range [0, num_classes), where num_classes is the last dimension of predictions. Values outside this range always count towards false_negative_at_<k>.
predictions Float Tensor with shape [D1, ... DN, num_classes] where N >= 1. Commonly, N=1 and predictions has shape [batch size, num_classes]. The final dimension contains the logit values for each class. [D1, ... DN] must match labels.
k Integer, k for @k metric.
class_id Integer class ID for which we want binary metrics. This should be in range [0, num_classes), where num_classes is the last dimension of predictions. If class_id is outside this range, the method returns NAN.
weights Tensor whose rank is either 0, or n-1, where n is the rank of labels. If the latter, it must be broadcastable to labels (i.e., all dimensions must be either 1, or the same as the corresponding labels dimension).
metrics_collections An optional list of collections that values should be added to.