Help protect the Great Barrier Reef with TensorFlow on Kaggle

tf.image.random_hue

Adjust the hue of RGB images by a random factor.

Used in the notebooks

Used in the tutorials

Equivalent to `adjust_hue()` but uses a `delta` randomly picked in the interval `[-max_delta, max_delta)`.

`max_delta` must be in the interval `[0, 0.5]`.

Usage Example:

````x = [[[1.0, 2.0, 3.0],`
`      [4.0, 5.0, 6.0]],`
`    [[7.0, 8.0, 9.0],`
`      [10.0, 11.0, 12.0]]]`
`tf.image.random_hue(x, 0.2)`
`<tf.Tensor: shape=(2, 2, 3), dtype=float32, numpy=...>`
```

For producing deterministic results given a `seed` value, use `tf.image.stateless_random_hue`. Unlike using the `seed` param with `tf.image.random_*` ops, `tf.image.stateless_random_*` ops guarantee the same results given the same seed independent of how many times the function is called, and independent of global seed settings (e.g. tf.random.set_seed).

`image` RGB image or images. The size of the last dimension must be 3.
`max_delta` float. The maximum value for the random delta.
`seed` An operation-specific seed. It will be used in conjunction with the graph-level seed to determine the real seeds that will be used in this operation. Please see the documentation of set_random_seed for its interaction with the graph-level random seed.

Adjusted image(s), same shape and DType as `image`.

`ValueError` if `max_delta` is invalid.

[{ "type": "thumb-down", "id": "missingTheInformationINeed", "label":"Missing the information I need" },{ "type": "thumb-down", "id": "tooComplicatedTooManySteps", "label":"Too complicated / too many steps" },{ "type": "thumb-down", "id": "outOfDate", "label":"Out of date" },{ "type": "thumb-down", "id": "samplesCodeIssue", "label":"Samples / code issue" },{ "type": "thumb-down", "id": "otherDown", "label":"Other" }]
[{ "type": "thumb-up", "id": "easyToUnderstand", "label":"Easy to understand" },{ "type": "thumb-up", "id": "solvedMyProblem", "label":"Solved my problem" },{ "type": "thumb-up", "id": "otherUp", "label":"Other" }]