Help protect the Great Barrier Reef with TensorFlow on Kaggle Join Challenge


Computes the cosine similarity between labels and predictions.

Inherits From: Loss

Note that it is a number between -1 and 1. When it is a negative number between -1 and 0, 0 indicates orthogonality and values closer to -1 indicate greater similarity. The values closer to 1 indicate greater dissimilarity. This makes it usable as a loss function in a setting where you try to maximize the proximity between predictions and targets. If either y_true or y_pred is a zero vector, cosine similarity will be 0 regardless of the proximity between predictions and targets.

loss = -sum(l2_norm(y_true) * l2_norm(y_pred))

Standalone usage:

y_true = [[0., 1.], [1., 1.]]
y_pred = [[1., 0.], [1., 1.]]
# Using 'auto'/'sum_over_batch_size' reduction type.
cosine_loss = tf.keras.losses.CosineSimilarity(axis=1)
# l2_norm(y_true) = [[0., 1.], [1./1.414, 1./1.414]]
# l2_norm(y_pred) = [[1., 0.], [1./1.414, 1./1.414]]
# l2_norm(y_true) . l2_norm(y_pred) = [[0., 0.], [0.5, 0.5]]
# loss = mean(sum(l2_norm(y_true) . l2_norm(y_pred), axis=1))
#       = -((0. + 0.) +  (0.5 + 0.5)) / 2
cosine_loss(y_true, y_pred).numpy()
# Calling with 'sample_weight'.
cosine_loss(y_true, y_pred, sample_weight=[0.8, 0.2]).numpy()
# Using 'sum' reduction type.
cosine_loss = tf.keras.losses.CosineSimilarity(axis=1,
cosine_loss(y_true, y_pred).numpy()
# Using 'none' reduction type.
cosine_loss = tf.keras.losses.CosineSimilarity(axis=1,
cosine_loss(y_true, y_pred).numpy()
array([-0., -0.999], dtype=float32)

Usage with the compile() API:

model.compile(optimizer='sgd', loss=tf.keras.losses.CosineSimilarity(axis=1))

axis The axis along which the cosine similarity is computed (the features axis). Defaults to -1.
reduction Type of tf.keras.losses.Reduction to apply to loss. Default value is AUTO. AUTO indicates that the reduction option will be determined by the usage context. For almost all cases this defaults to SUM_OVER_BATCH_SIZE. When used with tf.distribute.Strategy, outside of built-in training loops such as tf.keras compile and fit, using AUTO or SUM_OVER_BATCH_SIZE will raise an error. Please see this custom training tutorial for more details.
name Optional name for the instance.



View source

Instantiates a Loss from its config (output of get_config()).

config Output of get_config().

A Loss instance.


View source

Returns the config dictionary for a Loss instance.


View source

Invokes the Loss instance.

y_true Ground truth values. shape = [batch_size, d0, .. dN]