Mam pytanie? Połącz się ze społecznością na Forum TensorFlow Odwiedź Forum

tf.keras.metrics.CategoricalAccuracy

Calculates how often predictions match one-hot labels.

Inherits From: Mean, Metric, Layer, Module

Used in the notebooks

Used in the guide

You can provide logits of classes as y_pred, since argmax of logits and probabilities are same.

This metric creates two local variables, total and count that are used to compute the frequency with which y_pred matches y_true. This frequency is ultimately returned as categorical accuracy: an idempotent operation that simply divides total by count.

y_pred and y_true should be passed in as vectors of probabilities, rather than as labels. If necessary, use tf.one_hot to expand y_true as a vector.

If sample_weight is None, weights default to 1. Use sample_weight of 0 to mask values.

name (Optional) string name of the metric instance.
dtype (Optional) data type of the metric result.

Standalone usage:

m = tf.keras.metrics.CategoricalAccuracy()
m.update_state([[0, 0, 1], [0, 1, 0]], [[0.1, 0.9, 0.8],
                [0.05, 0.95, 0]])
m.result().numpy()
0.5
m.reset_state()
m.update_state([[0, 0, 1], [0, 1, 0]], [[0.1, 0.9, 0.8],
                [0.05, 0.95, 0]],
               sample_weight=[0.7, 0.3])
m.result().numpy()
0.3

Usage with compile() API:

model.compile(
  optimizer='sgd',
  loss='mse',
  metrics=[tf.keras.metrics.CategoricalAccuracy()])

Methods

reset_state

View source

Resets all of the metric state variables.

This function is called between epochs/steps, when a metric is evaluated during training.

result

View source

Computes and returns the metric value tensor.

Result computation is an idempotent operation that simply calculates the metric value using the state variables.

update_state

View source

Accumulates metric statistics.

y_true and y_pred should have the same shape.

Args
y_true Ground truth values. shape = [batch_size, d0, .. dN].
y_pred The predicted values. shape = [batch_size, d0, .. dN].
sample_weight Optional sample_weight acts as a coefficient for the metric. If a scalar is provided, then the metric is