Google I / O가 5 월 18 ~ 20 일에 돌아옵니다! 공간을 예약하고 일정을 짜세요

# tf.keras.metrics.sparse_top_k_categorical_accuracy

Computes how often integer targets are in the top K predictions.

#### Standalone usage:

y_true = [2, 1]
y_pred = [[0.1, 0.9, 0.8], [0.05, 0.95, 0]]
m = tf.keras.metrics.sparse_top_k_categorical_accuracy(
y_true, y_pred, k=3)
assert m.shape == (2,)
m.numpy()
array([1., 1.], dtype=float32)

y_true tensor of true targets.
y_pred tensor of predicted targets.
k (Optional) Number of top elements to look at for computing accuracy. Defaults to 5.

Sparse top K categorical accuracy value.

[{ "type": "thumb-down", "id": "missingTheInformationINeed", "label":"필요한 정보가 없음" },{ "type": "thumb-down", "id": "tooComplicatedTooManySteps", "label":"너무 복잡함/단계 수가 너무 많음" },{ "type": "thumb-down", "id": "outOfDate", "label":"오래됨" },{ "type": "thumb-down", "id": "samplesCodeIssue", "label":"Samples / code issue" },{ "type": "thumb-down", "id": "otherDown", "label":"기타" }]
[{ "type": "thumb-up", "id": "easyToUnderstand", "label":"이해하기 쉬움" },{ "type": "thumb-up", "id": "solvedMyProblem", "label":"문제가 해결됨" },{ "type": "thumb-up", "id": "otherUp", "label":"기타" }]