Optimizer that implements the FTRL algorithm.

Inherits From: Optimizer

See Algorithm 1 of this paper. This version has support for both online L2 (the L2 penalty given in the paper above) and shrinkage-type L2 (which is the addition of an L2 penalty to the loss function).

learning_rate A Tensor, floating point value, or a schedule that is a tf.keras.optimizers.schedules.LearningRateSchedule. The learning rate.
learning_rate_power A float value, must be less or equal to zero. Controls how the learning rate decreases during training. Use zero for a fixed learning rate.
initial_accumulator_value The starting value for accumulators. Only zero or positive values are allowed.
l1_regularization_strength A float value, must be greater than or equal to zero.
l2_regularization_strength A float value, must be greater than or equal to zero.
name Optional name prefix for the operations created when applying gradients. Defaults to "Ftrl".
l2_shrinkage_regularization_strength A float value, must be greater than or equal to zero. This differs from L2 above in that the L2 above is a stabilization penalty, whereas this L2 shrinkage is a magnitude penalty. When input is sparse shrinkage will only happen on the active weights.
**kwargs Keyword arguments. Allowed to be one of "clipnorm" or "clipvalue". "clipnorm" (float) clips gradients by norm; "clipvalue" (float) clips gradients by value.


name A non-empty string. The name to use for accumulators created for the optimizer.
**kwargs keyword arguments. Allowed to be {clipnorm, clipvalue, lr, decay}. clipnorm is clip gradients by norm; clipvalue is clip gradients by value, decay is included for backward compatibility to allow time inverse decay of learning rate. lr is included for backward compatibility, recommended to use learning_rate instead.

ValueError If name is malformed.

iterations Variable. The number of training steps this Optimizer has run.
weights Returns variables of this Optimizer based on the order created.



View source

Add a new slot variable for var.


View source